已知四邊形ABCD的對角線AC與BD相交于O,給出下列四個(gè)論斷:①OA=OC;②AB=CD;③∠BAD=∠DCB;④AD∥BC.從中選擇兩個(gè)作為條件,以“四邊形ABCD為平行四邊形”作為結(jié)論,得到的6個(gè)命題中,真命題有


  1. A.
    1個(gè)
  2. B.
    2個(gè)
  3. C.
    3個(gè)
  4. D.
    4個(gè)
B
分析:本題是開放題,可以針對各種特殊的平行四邊形的判定方法,結(jié)合題中給出的條件,再證明結(jié)論.
解答:解:分別選擇①④或③④時(shí),能推出四邊形ABCD為平行四邊形.
以③④為例證明.
證明:如圖,∵AD∥BC
∴∠ADB=∠CBD
在△ABD和△CDB中,
∠BAD=∠DCB,∠ADB=∠CBD,DB=BD
∴△ABD≌△CDB
∴AD=CB
又∵AD∥BC
∴四邊形ABCD為平行四邊形,
故選B.
點(diǎn)評:本題考查平行四邊形的判定.解答此類題的關(guān)鍵是要突破思維定勢的障礙,運(yùn)用發(fā)散思維,多方思考,探究問題在不同條件下的不同結(jié)論,挖掘它的內(nèi)在聯(lián)系,向“縱、橫、深、廣”拓展,從而尋找出添加的條件和所得的結(jié)論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知四邊形ABCD的外接圓⊙O的半徑為2,對角線AC與BD的交點(diǎn)為E,AE=EC,AB=
2
AE,且BD=2
3
,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

11、已知四邊形ABCD的四邊分別有a,b,c,d.其中a,c是對邊且a2+b2+c2+d2=2ac+2bd,則四邊形是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC與△ADC關(guān)于直線AC對稱,連接BD,若已知四邊形ABCD的面積是125,AC=25,則BD的長為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知四邊形ABCD的對角線互相垂直,若適當(dāng)添加一個(gè)條件,就能判定該四邊形是菱形.那么這個(gè)條件可以是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知四邊形ABCD的四個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,0),B(9,0),C(7,5),D(2,7),將該四邊形各頂點(diǎn)的橫坐標(biāo)都增加2,縱坐標(biāo)都增加3,其面積為( 。

查看答案和解析>>

同步練習(xí)冊答案