【題目】如圖,所有正方形的中心均在坐標(biāo)原點,且各邊與x軸或y軸平行,從內(nèi)到外,它們的邊長依次為2,4,68…頂點依次用A1,A2A3,A4,表示,則頂點A2019的坐標(biāo)是_________.

【答案】505,505

【解析】

根據(jù)正方形的性質(zhì)找出部分An點的坐標(biāo),根據(jù)坐標(biāo)的變化找出變化規(guī)律“A4n1n1,n1),A4n2n1n1),A4n3n1n1),A4n4n1,n1)(n為自然數(shù)),依此即可得出結(jié)論.

解:觀察,發(fā)現(xiàn):A11,1),A21,1),A311),A4,(1,1),A52,2),A62,2),A72,2),A82,2),A93,3),,

A4n1n1,n1),A4n2n1n1),A4n3n1,n1),A4n4n1,n1)(n為自然數(shù)).

2019504×43,

A2019505,505).

故答案為:(505,505.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系xOy中,O是坐標(biāo)原點,如圖1,直角三角板△MON中,OM=ON=,OQ=1,直線l過點N和點N,拋物線y=ax2+x+c過點Q和點N.

(1)求出該拋物線的解析式;

(2)已知點P是拋物線y=ax2+x+c上的一個動點.

初步嘗試

若點Py軸右側(cè)的該拋物線上,如圖2,過點PPA⊥y軸于點A,問:是否存在點P,使得以N、P、A為頂點的三角形與△ONQ相似.若存在,求出點P的坐標(biāo),若不存在,請說明理由;

深入探究

若點P在第一象限的該拋物線上,如圖3,連結(jié)PQ,與直線MN交于點G,以QG為直徑的圓交QN于點H,交x軸于點R,連結(jié)HR,求線段HR的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在中,,.點內(nèi)一點,且

1)求證:;

2,延長線上的一點,且.如圖(2),

①求證:平分

②若點在線段上,且,請判斷、的數(shù)量關(guān)系,并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,過點AAEBC,垂足為E,連接DE,F為線段DE上一點,且AFE=B

1)求證:ADF∽△DEC;

2)若AB=8,AD=6,AF=4,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商貿(mào)公司有、兩種型號的商品需運出,這兩種商品的體積和質(zhì)量分別如下表所示:

體積(立方米/件)

質(zhì)量(噸/件)

型商品

08

05

型商品

2

1

1)已知一批商品有兩種型號,體積一共是20立方米,質(zhì)量一共是105噸,求、兩種型號商品各有幾件?

2)物資公司現(xiàn)有可供使用的貨車每輛額定載重35噸,容積為6立方米,其收費方式有以下兩種:

車收費:每輛車運輸貨物到目的地收費600元;

②按噸收費:每噸貨物運輸?shù)侥康牡厥召M200元.

現(xiàn)要將(1)中商品一次或分批運輸?shù)侥康牡,如果兩種收費方式可混合使用,商貿(mào)公司應(yīng)如何選擇運送、付費方式,使其所花運費最少,最少運費是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是ABC的中線,tanB=,cosC=,AC=.求:

(1)BC的長;

(2)尺規(guī)作圖(保留作圖痕跡,不寫作法):作出ABC的外接圓,并求外接圓半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近年來網(wǎng)約車十分流行,初三某班學(xué)生對美團(tuán)滴滴兩家網(wǎng)約車公司各10名司機(jī)月收入進(jìn)行了一項抽樣調(diào)查,司機(jī)月收入(單位:千元)如圖所示:

根據(jù)以上信息,整理分析數(shù)據(jù)如下:

平均月收入/千元

中位數(shù)/千元

眾數(shù)/千元

方差/千元2

美團(tuán)

6

6

1.2

滴滴

6

4

(1)完成表格填空;

(2)若從兩家公司中選擇一家做網(wǎng)約車司機(jī),你會選哪家公司,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,OD⊥BCD,∠OCD=40°,則弦BC所對圓周角的度數(shù)是(  )

A. 40° B. 50° C. 50°130° D. 40°140°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABCD的兩邊AB,AD的長是關(guān)于x的方程x2mx0的兩個實數(shù)根.

(1)當(dāng)m為何值時,四邊形ABCD是菱形?求出這時菱形的邊長;

(2)AB的長為2,那么ABCD的周長是多少?

查看答案和解析>>

同步練習(xí)冊答案