【題目】如圖,正方形中,點為射線上一點,,的延長線于點,若,則______

【答案】

【解析】

連接ACBDO,作FGBEG,證出△BFG是等腰直角三角形,得出BG=FG=BF=,由三角形的外角性質得出∠AED=30°,由直角三角形的性質得出OE=OA,求出∠FEG=60°,∠EFG=30°,進而求出OA的值,即可得出答案.

連接ACBDO,作FGBEG,如圖所示

則∠BGF=EGF=90°

∵四邊形ABCD是正方形

ACBD,OA=OB=OC=OD,∠ADB=CBG=45°

∴△BFG是等腰直角三角形

BG=FG=BF=

∵∠ADB=EAD+AED,∠EAD=15°

∴∠AED=30°

OE=OA

EFAE

∴∠FEG=60°

∴∠EFG=30°

EG=FG=

BE=BG+EG=

OA+AO=

解得:OA=

AB=OA=

故答案為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(問題發(fā)現(xiàn))如圖1,半圓O的直徑AB10,點P是半圓O上的一個動點,則△PAB的面積最大值是 ;

(問題探究)如圖2所示,ABAC是某新區(qū)的三條規(guī)劃路,其中AB6kmAC3km,∠BAC60°,所對的圓心角為60°.新區(qū)管委會想在路邊建物資總站點P,在AB、AC路邊分別建物資分站點EF,即分別在、線段ABAC上選取點P、E、F.由于總站工作人員每天要將物資在各物資站點間按PEFP的路徑進行運輸,因此,要在各物資站點之間規(guī)劃道路PEEFFP.顯然,為了快捷環(huán)保和節(jié)約成本,就要使線段PE、EFFP之和最短(各物資站點與所在道路之間的距離、路寬均忽略不計).可求得△PEF周長的最小值為 km

(拓展應用)如圖3是某街心花園的一角,在扇形OAB中,∠AOB90°,OA12米,在圍墻OAOB上分別有兩個入口CD,且AC4米,DOB的中點,出口E上.現(xiàn)準備沿CE、DE從入口到出口鋪設兩條景觀小路,在四邊形CODE內種花,在剩余區(qū)域種草.

①出口E設在距直線OB多遠處可以使四邊形CODE的面積最大?最大面積是多少?(小路寬度不計)

②已知鋪設小路CE所用的普通石材每米的造價是200元,鋪設小路DE所用的景觀石材每米的造價是400元.

請問:在上是否存在點E,使鋪設小路CEDE的總造價最低?若存在,求出最低總造價和出口E距直線OB的距離;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解今年初三學生的數(shù)學學習情況,某校對上學期的數(shù)學成績作了統(tǒng)計分析,繪制得到如下圖表.請結合圖表所給出的信息解答下列問題:

成績

頻數(shù)

頻率

優(yōu)秀

45

b

良好

a

0.3

合格

105

0.35

不合格

60

c

(1)該校初三學生共有多少人?

(2)求表中a,b,c的值,并補全條形統(tǒng)計圖.

(3)初三(一)班數(shù)學老師準備從成績優(yōu)秀的甲、乙、丙、丁四名同學中任意抽取兩名同學做學習經驗介紹,求恰好選中甲、乙兩位同學的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在△ABC中,∠A,∠B,∠C的對邊分別是a,bc,關于x的方程a1x2+2bx+c1+x2)=0有兩個相等實根,且3ca+3b

1)試判斷△ABC的形狀;

2)求sinA+sinB的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】5張不透明的卡片,除正面上的圖案不同外,其他均相同.將這5張卡片背面向上洗勻后放在桌面上.

1)從中隨機抽取1張卡片,卡片上的圖案是中心對稱圖形的概率為_____

2)若從中隨機抽取1張卡片后不放回,再隨機抽取1張,請用畫樹狀圖或列表的方法,求兩次所抽取的卡片恰好都是軸對稱圖形的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A的坐標為(4,2).將點A繞坐標原點O旋轉90°后,再向左平移1個單位長度得到點A′,則過點A′的正比例函數(shù)的解析式為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)ykx+b的圖象與反比例函數(shù)y的圖象交于A(﹣2,1),B1,n)兩點.

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)根據圖象寫出一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店銷售一種商品,每件成本8元,規(guī)定每件商品售價不低于成本,且不高于20元,經市場調查每天的銷售量y(件)與每件售價x(元)滿足一次函數(shù)關系,部分數(shù)據如下表:

售價x(元件)

10

11

12

13

14

x

銷售量y(件)

100

90

80

70

   

   

1)將上面的表格填充完整;

2)設該商品每天的總利潤為w元,求wx之間的函數(shù)表達式;

3)計算(2)中售價為多少元時,獲得最大利潤,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了提高學校的就餐效率,巫溪中學實踐小組對食堂就餐情況進行調研后發(fā)現(xiàn):在單位時間內,每個窗口買走午餐的人數(shù)和因不愿長久等待而到小賣部的人數(shù)各是一個固定值,并且發(fā)現(xiàn)若開一個窗口,45分鐘可使等待的人都能買到午餐,若同時開2個窗口,則需30分鐘.還發(fā)現(xiàn),若能在15分鐘內買到午餐,那么在單位時間內,去小賣部就餐的人就會減少80%.在學?側藬(shù)一定且人人都要就餐的情況下,為方便學生就餐,總務處要求食堂在10分鐘內賣完午餐,至少要同時開多少______個窗口.

查看答案和解析>>

同步練習冊答案