分析 連接CD,根據(jù)線段垂直平分線的性質(zhì)得到CD=AD,由等腰三角形的性質(zhì)得到∠DCE=∠A,∠BCD=∠B,于是得到即∠ACB=90°,于是得到結(jié)論.
解答 解:△ABC是直角三角形,
理由:連接CD,
∵AC的中垂線交AB,AC于點(diǎn)D,E,
∴CD=AD,
∴∠DCE=∠A,
∵點(diǎn)D是AB的中點(diǎn),
∴BD=AD,
∴CD=BD,
∴∠BCD=∠B,
∵∠DCA+∠A+∠BCD+∠B=180°,
∴∠BCD+∠DCA=90°,
即∠ACB=90°,
∴△ABC是直角三角形.
點(diǎn)評 本題考查了線段垂直平分線的性質(zhì),等腰三角形的性質(zhì),熟練掌握性質(zhì)垂直平分線的性質(zhì)是解題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com