【題目】如圖,在四邊形ABCD中,AD∥BC,∠ABC=90°,AB=AD,連接BD,點(diǎn)E在AB上,且∠BDE=15°,DE=4,DC=2

(1)求BE的長(zhǎng);

(2)求四邊形DEBC的面積.

(注意:本題中的計(jì)算過(guò)程和結(jié)果均保留根號(hào))

【答案】(1)BE=6﹣2;(2)S四邊形DEBC=36+6

【解析】

(1)解直角三角形求出AD、AE即可解決問(wèn)題;

(2)作DFBCF.則四邊形ABFD是矩形,解直角三角形求出CF,即可解決問(wèn)題;

(1)在四邊形ABCD中,∵ADBC,ABC=90°,

∴∠BAD=90°,

AB=AD,

∴∠ABD=ADB=45°,

∵∠BDE=15°,

∴∠ADE=30°,

RtADE中,AE=DE×sin30=2,AD=DEcos30°=6,

AB=AD=6,

BE=6﹣2

(2)作DFBCF.則四邊形ABFD是矩形,

BF=AD=6,DF=AB=6,

RtDFC中,FC=,

BC=6+4,

S四邊形DEBC=SDEB+SBCD=×(6﹣2)×6+(6+4)×6=36+6

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)不透明的口袋中裝有4個(gè)完全相同的小球,分別標(biāo)有數(shù)字1、2、3、4,另有一個(gè)可以自由旋轉(zhuǎn)的圓盤(pán).被分成面積相等的3個(gè)扇形區(qū),分別標(biāo)有數(shù)字12、3(如圖所示).小穎和小亮想通過(guò)游戲來(lái)決定誰(shuí)代表學(xué)校參加歌詠比賽,游戲規(guī)則為:一人從口袋中摸出一個(gè)小球,另一個(gè)人轉(zhuǎn)動(dòng)圓盤(pán),如果所摸球上的數(shù)字與圓盤(pán)上轉(zhuǎn)出數(shù)字之和小于4,那么小穎去;否則小亮去.

1)用樹(shù)狀圖或列表法求出小穎參加比賽的概率;

2)你認(rèn)為該游戲公平嗎?請(qǐng)說(shuō)明理由;若不公平,請(qǐng)修改該游戲規(guī)則,使游戲公平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】次函數(shù) y=kx+b與反數(shù) y=x0Am,6B3n點(diǎn)

1求一次函數(shù)的解析式;

2AOB的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】課本中有一道作業(yè)題:

有一塊三角形余料ABC,它的邊BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一邊在BC上,其余兩個(gè)頂點(diǎn)分別在AB,AC上.問(wèn)加工成的正方形零件的邊長(zhǎng)是多少mm?

小穎解得此題的答案為48mm,小穎善于反思,她又提出了如下的問(wèn)題.

1)如果原題中要加工的零件是一個(gè)矩形,且此矩形是由兩個(gè)并排放置的正方形所組成,如圖1,此時(shí),這個(gè)矩形零件的兩條邊長(zhǎng)又分別為多少mm?請(qǐng)你計(jì)算.

2)如果原題中所要加工的零件只是一個(gè)矩形,如圖2,這樣,此矩形零件的兩條邊長(zhǎng)就不能確定,但這個(gè)矩形面積有最大值,求達(dá)到這個(gè)最大值時(shí)矩形零件的兩條邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+2x+m﹣2=0有兩個(gè)實(shí)數(shù)根,m為正整數(shù),且該方程的根都是整數(shù),則符合條件的所有正整數(shù)m的和為( 。

A. 6 B. 5 C. 4 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線(xiàn)y=x2+x﹣2與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,直線(xiàn)l經(jīng)過(guò)A,C兩點(diǎn),連接BC.

(1)求直線(xiàn)l的解析式;

(2)若直線(xiàn)x=m(m0)與該拋物線(xiàn)在第三象限內(nèi)交于點(diǎn)E,與直線(xiàn)l交于點(diǎn)D,連接OD.當(dāng)ODAC時(shí),求線(xiàn)段DE的長(zhǎng);

(3)取點(diǎn)G(0,﹣1),連接AG,在第一象限內(nèi)的拋物線(xiàn)上,是否存在點(diǎn)P,使∠BAP=∠BCO﹣∠BAG?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O的半徑為5,ABC是⊙O的內(nèi)接三角形,AB=8.AD和過(guò)點(diǎn)B的切線(xiàn)互相垂直,垂足為D

(1)求證:∠BAD+C=90°;

(2)求線(xiàn)段AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A,B,C都在拋物線(xiàn)y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx軸,∠ABC=135°,且AB=4.

(1)填空:拋物線(xiàn)的頂點(diǎn)坐標(biāo)為 (用含m的代數(shù)式表示);

(2)求ABC的面積(用含a的代數(shù)式表示);

(3)若ABC的面積為2,當(dāng)2m﹣5≤x≤2m﹣2時(shí),y的最大值為2,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB⊙O的直徑,點(diǎn)E上的一點(diǎn),∠DBC=∠BED

1)求證:BC⊙O的切線(xiàn);

2)已知AD=3CD=2,求BC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案