【題目】如圖所示,在⊙O內(nèi)有折線OABC,其中OA=4,AB=6,∠A=∠B=60°,則BC的長為

【答案】10
【解析】解:延長AO交BC于D,作OH⊥BC于H, ∵∠A=∠B=60°,
∴△ABD為等邊三角形,
∴∠ADB=60°,AD=BD=AB=6,
∴OD=AD﹣OA=6﹣4=2,
在Rt△ODH中,∠ODH=60°,
∴∠DOH=30°,
∴DH= OD=1,
∴BH=BD﹣DH=6﹣1=5,
∵OH⊥BC,
∴BC=2BH=10.
故答案為:10.

首先延長AO交BC于D,作OH⊥BC于H,由∠A=∠B=60°,可判斷△ABD為等邊三角形,根據(jù)等邊三角形的性質(zhì)可求得BD的長,再由含30°角的直角三角形的性質(zhì),求得DH的長,則可得到BH的長,根據(jù)垂徑定理的性質(zhì),即可求得答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】滴滴快車”是一種便捷的出行工具,計價規(guī)則如下表:

隨著互聯(lián)網(wǎng)的不斷發(fā)展,更多的人們選擇了“滴滴快車”出行。假設(shè)“滴滴快車”的平均行車速度為50 km/h,請回答下列問題:

(1)小明和小冰各自乘坐“滴滴快車”,行車?yán)锍谭謩e為3千米和10千米,請問他們各自需付車費(fèi)多少錢?

(2)張老師與王老師的家和學(xué)校在同一條直線上,位置如圖所示。一天,張老師和王老師各自從學(xué)!暗蔚慰燔嚒被丶遥謩e付車費(fèi)9.6元和24元。請問,張老師和王老師的家相距多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從三角形(不是等腰三角形)一個頂點(diǎn)引出一條射線與對邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原三角形相似,我們把這條線段叫做這個三角形的完美分割線.
(1)如圖1,在△ABC中,CD為角平分線,∠A=40°,∠B=60°,求證:CD為△ABC的完美分割線.
(2)在△ABC中,∠A=48°,CD是△ABC的完美分割線,且△ACD為等腰三角形,求∠ACB的度數(shù).
(3)如圖2,△ABC中,AC=2,BC= ,CD是△ABC的完美分割線,且△ACD是以CD為底邊的等腰三角形,求完美分割線CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)B、E分別在AC、DF上,AF分別交BD、CE于點(diǎn)MN,∠A=∠F,∠1=∠2.

(1)求證:四邊形BCED是平行四邊形;

(2)已知DE=2,連接BN,若BN平分DBC,求CN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解決問題:

一輛貨車從超市出發(fā),向東走了3千米到達(dá)小彬家,繼續(xù)走2.5千米到達(dá)小穎家,然后向西走了10千米到達(dá)小明家,最后回到超市.

(1)以超市為原點(diǎn),以向東的方向?yàn)檎较,?/span>1個單位長度表示1千米,在數(shù)軸上表示出小明家,小彬家,小穎家的位置.

(2)小明家距小彬家多遠(yuǎn)?

(3)貨車一共行駛了多少千米?

(4)貨車每千米耗油0.2升,這次共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一位出租車司機(jī)某日中午的營運(yùn)全在市區(qū)的環(huán)城公路上進(jìn)行.如果規(guī)定:順時針方向?yàn)檎,逆時針方向?yàn)樨?fù),那天中午他拉了五位乘客所行車的里程如下:(單位:千米)+10,﹣7,+4,﹣9,+2.

(1)將最后一名乘客送到目的地時,這位司機(jī)距離出車地點(diǎn)的位置如何?

(2)若汽車耗油為/千米,那么這天中午這輛出租車的油耗多少升?

(3)如果出租車的收費(fèi)標(biāo)準(zhǔn)是:起步價10元,3千米后每千米2元,問:這個司機(jī)這天中午的收入是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,水壩的橫斷面是梯形,背水坡AB的坡角∠BAD=60°,坡長AB=20 m,為加強(qiáng)水壩強(qiáng)度,降壩底從A處后水平延伸到F處,使新的背水坡角∠F=45°,求AF的長度(結(jié)果精確到1米,參考數(shù)據(jù): 1.414, ≈1.732).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝廠承攬一項(xiàng)生產(chǎn)夏涼小衫1600件的任務(wù),計劃用t天完成.

(1)寫出每天生產(chǎn)夏涼小衫w(件)與生產(chǎn)時間t(天)(t>4)之間的函數(shù)關(guān)系式;

(2)由于氣溫提前升高,商家與服裝廠商議調(diào)整計劃,決定提前4天交貨,那么服裝廠每天要多做多少件夏涼小衫才能完成任務(wù)?

【答案】(1);(2)

【解析】試題分析:(1)根據(jù)實(shí)際意義可列出夏涼小衫w(件)與生產(chǎn)時間t(天)(t4)之間的函數(shù)關(guān)系式;

2)根據(jù)題意列出t﹣4對應(yīng)的式子,與(1)中的式子相減即可.

試題解析:(1)由題意可得,函數(shù)關(guān)系式為:w=);

2==.(或).

答:每天多做(或)件夏涼小衫才能完成任務(wù).

考點(diǎn):反比例函數(shù)的應(yīng)用.

型】解答
結(jié)束】
13

【題目】如圖所示,小華設(shè)計了一個探究杠桿平衡條件的實(shí)驗(yàn):在一根勻質(zhì)的木桿中點(diǎn)O左側(cè)固定位置B處懸掛重物A,在中點(diǎn)O右側(cè)用一個彈簧秤向下拉,改變彈簧秤與點(diǎn)O的距離xcm),觀察彈簧秤的示數(shù)y(N)的變化情況。實(shí)驗(yàn)數(shù)據(jù)記錄如下:

xcm

10

15

20

25

30

y(N)

30

20

15

12

10

(1)把上表中x,y的各組對應(yīng)值作為點(diǎn)的坐標(biāo),在坐標(biāo)系中描出相應(yīng)的點(diǎn),用平滑曲線連接這些點(diǎn)并觀察所得的圖象,猜測y(N)與xcm)之間的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;

(2)當(dāng)彈簧秤的示數(shù)為24N時,彈簧秤與O點(diǎn)的距離是多少cm?

隨著彈簧秤與O點(diǎn)的距離不斷減小,彈簧秤上的示數(shù)將發(fā)生怎樣的變化?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,半徑均為1個單位長度的半圓O1、O2、O3,組成一條平滑的曲線,點(diǎn)P從原點(diǎn)O出發(fā),沿這條曲線向右運(yùn)動,速度為每秒個單位長度,則第2015秒時,點(diǎn)P的坐標(biāo)是( )

A. 20140B. 2015,﹣1C. 2015,1D. 2016,0

查看答案和解析>>

同步練習(xí)冊答案