【題目】已知和為等腰三角形,,,,點(diǎn)在上,點(diǎn)在射線上.
(1)如圖1,若∠BAC=60°,點(diǎn)F與點(diǎn)C重合,求證:AF=AE+AD;
(2)如圖2,若AD=AB,求證:AF=AE+BC. .
【答案】(1)見解析;(2)見解析;
【解析】
(1)由∠BAC=∠EDF=60°,推出△ABC、△DEF為等邊三角形,于是得到∠BCE+∠ACE=∠DCA+∠ECA=60°,推出△BCE≌△ACD(SAS),根據(jù)全等三角形的性質(zhì)得到AD=BE,即可得到結(jié)論;
(2)在FA上截取FM=AE,連接DM,推出△AED≌△MFD(SAS),根據(jù)全等三角形的性質(zhì)得到DA=DM=AB=AC,∠ADE=∠MDF,證得∠ADM=∠EDF=∠BAC,推出△ABC≌△DAM(SAS),根據(jù)全等三角形的性質(zhì)得到AM=BC,即可得到結(jié)論.
證明:(1)∵∠BAC=∠EDF=60°,
∴△ABC、△DEF為等邊三角形,
∴∠BCE+∠ACE=∠DCA+∠ECA=60°,
在△BCE和△ACD中
∴△BCE≌△ACD(SAS),
∴AD=BE,
∴AE+AD=AE+BE=AB=AF;
(2)在FA上截取FM=AE,連接DM,
∵∠BAC=∠EDF,
∴∠AED=∠MFD,
在△AED和△MFD中
,
∴△AED≌△MFD(SAS),
∴DA=DM=AB=AC,∠ADE=∠MDF,
∴∠ADE+∠EDM=∠MDF+∠EDM,
即∠ADM=∠EDF=∠BAC,
在△ABC和△DAM中,
,
∴△ABC≌△DAM(SAS),
∴AM=BC,
∴AE+BC=FM+AM=AF.
即AF=AE+BC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD是BC邊的中線,過點(diǎn)A作BC的平行線,過點(diǎn)B作AD的平行線,兩線交于點(diǎn)E.
(1)求證:四邊形ADBE是矩形;
(2)連接DE,交AB于點(diǎn)O,若BC=8,AO=,求cos∠AED的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠α、∠β分別是與∠BAD、∠BCD相鄰的補(bǔ)角,且∠B+∠CDA=140°,則∠α+∠β=( ).
A.260°B.150°C.135°D.140°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,網(wǎng)格中的每個(gè)小正方形的邊長都是1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).
△ACB和△DCE的頂點(diǎn)都在格點(diǎn)上,ED的延長線交AB于點(diǎn)F.
(1)求證:△ACB∽△DCE;(2)求證:EF⊥AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在正方形ABCD中,點(diǎn)E在邊CD上,AQ⊥BE于點(diǎn)Q,DP⊥AQ于點(diǎn)P.
(1)求證:AP=BQ;
(2)在不添加任何輔助線的情況下,請直接寫出圖中四對(duì)線段,使每對(duì)中較長線段與較短線段長度的差等于PQ的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016新疆)如圖,ABCD中,AB=2,AD=1,∠ADC=60°,將ABCD沿過點(diǎn)A的直線l折疊,使點(diǎn)D落到AB邊上的點(diǎn)D′處,折痕交CD邊于點(diǎn)E.
(1)求證:四邊形BCED′是菱形;
(2)若點(diǎn)P時(shí)直線l上的一個(gè)動(dòng)點(diǎn),請計(jì)算PD′+PB的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李老師為了了解學(xué)生暑期在家的閱讀情況,隨機(jī)調(diào)查了20名學(xué)生某一天的閱讀小時(shí)數(shù),具體情況統(tǒng)計(jì)如下:
閱讀時(shí)間 (小時(shí)) | 2 | 2.5 | 3 | 3.5 | 4 |
學(xué)生人數(shù)(名) | 1 | 2 | 8 | 6 | 3 |
則關(guān)于這20名學(xué)生閱讀小時(shí)數(shù)的說法正確的是( 。
A. 眾數(shù)是8 B. 中位數(shù)是3 C. 平均數(shù)是3 D. 方差是0.34
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若點(diǎn)P從點(diǎn)A出發(fā),以每秒2cm的速度沿折線A-C-B-A運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).
(1)若點(diǎn)P在AC上,且滿足PA=PB時(shí),求出此時(shí)t的值;
(2)若點(diǎn)P恰好在∠BAC的角平分線上,求t的值;
(3)在運(yùn)動(dòng)過程中,直接寫出當(dāng)t為何值時(shí),△BCP為等腰三角形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com