【題目】(Ⅰ)已知方程①
②
請判斷這兩個方程是否有解?并說明理由;
(Ⅱ)已知 ,求 的值.
【答案】(Ⅰ)方程①無解, 方程②有解,理由見解析;(Ⅱ)2
【解析】
(Ⅰ)①根據(jù)二次根式的有意義的條件求出x2016,等式左邊最小值為,故方程無解;②根據(jù)二次根式的有意義的條件求出 ,等式左邊最小值為,故方程有解;
(Ⅱ)設(shè) ,將它與 左右兩邊分別相乘進行變形,即可求出y.
解:(Ⅰ)方程①無解,理由如下:
由 得 ,
當(dāng) 時, 的最小值為 ,
方程①無解.
方程②有解,理由如下:
由 得 ,
當(dāng) 時, 的最小值為 <3,
方程②有解.
(Ⅱ) ……(1)
設(shè) ……(2)
由(1) (2)得到:
即:的值為2.
故答案為:(Ⅰ)方程①無解,方程②有解;(Ⅱ)2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某旅游商店8月份營業(yè)額為15萬元,9月份下降了20%.受“十一”黃金周以及經(jīng)濟利好因素的影響,10月份、11月份營業(yè)額均比上一個月有所增長,10月份增長率是11月份增長率的1.5倍,已知該旅游商店11月份營業(yè)額為24萬元.
(1)問:9月份的營業(yè)額是多少萬元?
(2)求10月份營業(yè)額的增長率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把一副三角板如圖①放置,其中,∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜邊AB=6cm,DC=7cm.把三角板DCE繞點C順時針旋轉(zhuǎn)15°得到△D1CE1(如圖②).
(1)求∠OFE1的度數(shù);
(2)求線段AD1的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,BC=4,點E是邊BC上一動點,把△DCE沿DE折疊得△DFE,射線DF交直線CB于點P,當(dāng)△AFD為等腰三角形時,DP的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,∠ABC=90°,BM是AC邊中線,點D,E分別在邊AC和BC上,DB=DE,EF⊥AC于點F,以下結(jié)論:①△BMD≌△DFE;②△NBE∽△DBC;③AC=2DF;④EFAB=CFBC,其中正確結(jié)論的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的坐標(biāo)分別為A(﹣3,5),B(﹣4,2),C(﹣1,4)(注:每個方格的邊長均為1個單位長度).
(1)將△ABC沿著水平方向向右平移6個單位得△A1B1C1,請畫出△A1B1C1;
(2)作出將△ABC關(guān)于O點成中心對稱的△A2B2C2,并直接寫出的坐標(biāo);
(3)△A1B1C1與△A2B2C2是否成中心對稱?若是,請寫出對稱中心的坐標(biāo);若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是某公園一塊草坪上的自動旋轉(zhuǎn)噴水裝置,這種旋轉(zhuǎn)噴水裝置的旋轉(zhuǎn)角度為240°,它的噴灌區(qū)是一個扇形.小濤同學(xué)想了解這種裝置能夠噴灌的草坪面積,他測量出了相關(guān)數(shù)據(jù),并畫出了示意圖.如圖2,A,B兩點的距離為18米,求這種裝置能夠噴灌的草坪面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有這樣一個問題:探究函數(shù)y=﹣2x的圖象與性質(zhì).
小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y=﹣2x的圖象與性質(zhì)進行了探究.
下面是小東的探究過程,請補充完整:
(1)函數(shù)y=﹣2x的自變量x的取值范圍是_______;
(2)如表是y與x的幾組對應(yīng)值
x | … | ﹣4 | ﹣3.5 | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 3.5 | 4 | … |
y | … | ﹣ | ﹣ |
|
| 0 | ﹣ | ﹣ | m | … |
則m的值為_______;
(3)如圖,在平面直角坐標(biāo)系中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點.根據(jù)描出的點,畫出該函數(shù)的圖象;
(4)觀察圖象,寫出該函數(shù)的兩條性質(zhì)________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△CDE的頂點C點坐標(biāo)為C(1,﹣2),點D的橫坐標(biāo)為,將△CDE繞點C旋轉(zhuǎn)到△CBO,點D的對應(yīng)點B在x軸的另一個交點為點A.
(1)圖中,∠OCE等于∠_____;
(2)求拋物線的解析式;
(3)拋物線上是否存在點P,使S△PAE=S△CDE?若存在,直接寫出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com