【題目】已知,在△ABC中,∠A=90°,AB=AC,點(diǎn)D為BC的中點(diǎn).
(1)如圖①,若點(diǎn)E、F分別為AB、AC上的點(diǎn),且DE⊥DF,求證:BE=AF;
(2)若點(diǎn)E、F分別為AB、CA延長(zhǎng)線上的點(diǎn),且DE⊥DF,那么BE=AF嗎?請(qǐng)利用圖②說明理由.
【答案】(1)證明見解析;(2)BE=AF,證明見解析.
【解析】(1)連接AD,根據(jù)等腰三角形的性質(zhì)可得出AD=BD、∠EBD=∠FAD,根據(jù)同角的余角相等可得出∠BDE=∠ADF,由此即可證出△BDE≌△ADF(ASA),再根據(jù)全等三角形的性質(zhì)即可證出BE=AF;
(2)連接AD,根據(jù)等腰三角形的性質(zhì)及等角的補(bǔ)角相等可得出∠EBD=∠FAD、BD=AD,根據(jù)同角的余角相等可得出∠BDE=∠ADF,由此即可證出△EDB≌△FDA(ASA),再根據(jù)全等三角形的性質(zhì)即可得出BE=AF.
詳(1)證明:連接AD,如圖①所示.
∵∠A=90°,AB=AC,
∴△ABC為等腰直角三角形,∠EBD=45°.
∵點(diǎn)D為BC的中點(diǎn),
∴AD=BC=BD,∠FAD=45°.
∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°,
∴∠BDE=∠ADF.
在△BDE和△ADF中,
,
∴△BDE≌△ADF(ASA),
∴BE=AF;
(2)BE=AF,證明如下:
連接AD,如圖②所示.
∵∠ABD=∠BAD=45°,
∴∠EBD=∠FAD=135°.
∵∠EDB+∠BDF=90°,∠BDF+∠FDA=90°,
∴∠EDB=∠FDA.
在△EDB和△FDA中,
,
∴△EDB≌△FDA(ASA),
∴BE=AF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明到某服裝商場(chǎng)進(jìn)行社會(huì)調(diào)查,了解到該商場(chǎng)為了激勵(lì)營(yíng)業(yè)員的工作積極性,實(shí)行“月總收入=基本工資+計(jì)件獎(jiǎng)金”的方法,并獲得如下信息:
營(yíng)業(yè)員 | 小麗 | 小華 |
月銷售件數(shù)(件) | 200 | 150 |
月總收入(元) | 1400 | 1250 |
假設(shè)營(yíng)業(yè)員的月基本工資為x元,銷售每件服裝獎(jiǎng)勵(lì)y元.
(1)求x、y的值;
(2)若營(yíng)業(yè)員小麗某月的總收入不低于1800元,那么小麗當(dāng)月至少要賣服裝多少件?
(3)商場(chǎng)為了多銷售服裝,對(duì)顧客推薦一種購(gòu)買方式:如果購(gòu)買甲3件,乙2件,丙1件共需315元;如果購(gòu)買甲1件,乙2件,丙3件共需285元.某顧客想購(gòu)買甲、乙、丙各一件共需 元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為加強(qiáng)中小學(xué)生安全和禁毒教育,某校組織了“防溺水、交通安全、禁毒”知識(shí)競(jìng)賽,為獎(jiǎng)勵(lì)在競(jìng)賽中表現(xiàn)優(yōu)異的班級(jí),學(xué)校準(zhǔn)備從體育用品商場(chǎng)一次性購(gòu)買若干個(gè)足球和籃球(每個(gè)足球的價(jià)格相同,每個(gè)籃球的價(jià)格相同),購(gòu)買1個(gè)足球和1個(gè)籃球共需159元;足球單價(jià)是籃球單價(jià)的2倍少9元.
(1)求足球和籃球的單價(jià)各是多少元?
(2)根據(jù)學(xué)校實(shí)際情況,需一次性購(gòu)買足球和籃球共20個(gè),但要求購(gòu)買足球和籃球的總費(fèi)用不超過1550元,學(xué)校最多可以購(gòu)買多少個(gè)足球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列關(guān)系式中正確的是( )
A.ac>0
B.b+2a<0
C.b2﹣4ac>0
D.a﹣b+c<0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下圖,在平面直角坐標(biāo)系中,對(duì)進(jìn)行循環(huán)往復(fù)的軸對(duì)稱變換,若原來點(diǎn)A坐標(biāo)是,則經(jīng)過第2019次變換后所得的A點(diǎn)坐標(biāo)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù)y=﹣x2+bx+c的圖象過點(diǎn)(﹣1,﹣8),(0,﹣3).
(1)求此二次函數(shù)的表達(dá)式,并用配方法將其化為y=a(x﹣h)2+k的形式;
(2)畫出此函數(shù)圖象的示意圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列命題中:①過一點(diǎn)有且只有一條直線與已知直線平行;②平方根與立方根相等的數(shù)有和;③在同一平面內(nèi),如果,,則;④直線外一點(diǎn)與直線上各點(diǎn)連接而成的所有線段中,最短線段的長(zhǎng)是,則點(diǎn)到直線的距離是;⑤無理數(shù)包括正無理數(shù)、零和負(fù)無理數(shù).其中真命題的個(gè)數(shù)是( )
A. 個(gè)B. 個(gè)C. 個(gè)D. 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將連續(xù)的奇數(shù)1,3,5,7,…排成如圖的數(shù)表,用如圖所示的“十字框”可以框出5個(gè)數(shù),這5個(gè)數(shù)之間將滿足一定的關(guān)系,按照此方法,若“十字框”框出的5個(gè)數(shù)的和等于2015,則這5個(gè)數(shù)中最大數(shù)為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com