【題目】如圖,四邊形ABCD的對角線AC、BD相交于點O,分別作BE⊥AC于E,DF⊥AC于F,已知OE=OF,CE=AF.

(1)求證:△BOE≌△DOF;

(2)若,則四邊形ABCD是什么特殊四邊形?請說明理由.

【答案】(1)證明見解析;(2)解:四邊形ABCD是矩形,理由見解析.

【解析】(1)根據(jù)AAS或ASA即可證明;(2)結(jié)論:矩形. 只要證明對角線AC=BD即可;

解: (1)∴ ∠BEO=90°=∠DFO ,

又∵ OE=OF ∠BOE=∠DOF,

∴ △BOE≌△DOF(ASA),

(2)解:四邊形ABCD是矩形,

證明:∵ △BOE≌△DOF,

∴ OB=OD,

∵ OE=OF,CE=AF,

∴ OC=OA,

∴ 四邊形ABCD是平行四邊形,

又∵,

∴ AC=BD,

ABCD是矩形.

“點睛”本題考查全等三角形的判定與性質(zhì)、平行四邊形的判定和性質(zhì). 矩形的判定和性質(zhì)等知識,解題的關(guān)鍵是熟練掌握基本概念,靈活運用知識解決問題,屬于中考?碱}型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一名同學(xué)調(diào)查了全班名同學(xué)分別喜歡相聲、小品、歌曲、舞蹈節(jié)目的類別情況,并制成如下統(tǒng)計表:

最喜歡的節(jié)目類別

劃記

人數(shù)

百分?jǐn)?shù)(%)

相聲

小品

正正正一

歌曲

正正

舞蹈

正一

其中對這些節(jié)目類別的統(tǒng)計中,僅有一類節(jié)目的統(tǒng)計是完全正確的,該項統(tǒng)計類別是(

A.相聲B.小品C.歌曲D.舞蹈

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校準(zhǔn)備從體育用品商店一次性購買若干個籃球和足球(每個籃球的價格相同,每個足球的價格相同),購買1個足球和2個籃球共需270元;購買2個足球和3個籃球共需440元.

1)問足球和籃球的單價各是多少元?

2)若購買足球和籃球共24個,且購買籃球的個數(shù)大于足球個數(shù)的2倍,購買球的總費用不超過2220元,問該學(xué)校有哪幾種不同的購買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=3x2+1和y=3(x﹣1)2 , 以下說法: ①它們的圖象都是開口向上;

②它們的對稱軸都是y軸,頂點坐標(biāo)都是原點(0,0);

③當(dāng)x>0時,它們的函數(shù)值y都是隨著x的增大而增大;

④它們的開口的大小是一樣的.

其中正確的說法有(

A. 1個 B. 2 C. 3 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列分式方程:

1;

2 - =1 ;

3 -6 =0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在平面直角坐標(biāo)系中,點坐標(biāo),點坐標(biāo),連接,平分于點

1)如圖1,求的長;

2)如圖2,延長線上一點,連接,,且,過點軸于點,若點是線段上一點,點的橫坐標(biāo)為,連接,設(shè)的面積為,求的關(guān)系;

3)在(2)的條件下,如圖3,線段上存在一點,使得,點的延長線上,且,連接,若,求點的坐標(biāo)及值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲轉(zhuǎn)盤被分成3個面積相等的扇形、乙轉(zhuǎn)盤被分成2個面積相等的扇形.小夏和小秋利用它們來做決定獲勝與否的游戲.規(guī)定小夏轉(zhuǎn)甲盤一次、小秋轉(zhuǎn)乙盤一次為一次游戲(當(dāng)指針指在邊界線上時視為無效,重轉(zhuǎn)).

(1)小夏說:“如果兩個指針?biāo)竻^(qū)域內(nèi)的數(shù)之和為6或7,則我獲勝;否則你獲勝”.按小夏設(shè)計的規(guī)則,請你寫出兩人獲勝的可能性分別是多少?

(2)請你對小夏和小秋玩的這種游戲設(shè)計一種公平的游戲規(guī)則,并用一種合適的方法(例如:樹狀圖,列表)說明其公平性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點,,請確定點C的坐標(biāo),使得以A,B,CO為頂點的四邊形是平行四邊形,則滿足條件的所有點C的坐標(biāo)是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】五一期間,某商場搞優(yōu)惠促銷,決定由顧客抽獎確定折扣.某顧客購買甲、乙兩種商品,分別抽到七折(按售價的70%銷售)和九折(按售價的90%銷售),共付款386元,這兩種商品原銷售價之和為500元.問:這兩種商品的原銷售價分別為多少元?

查看答案和解析>>

同步練習(xí)冊答案