【題目】一名同學調查了全班名同學分別喜歡相聲、小品、歌曲、舞蹈節(jié)目的類別情況,并制成如下統(tǒng)計表:

最喜歡的節(jié)目類別

劃記

人數(shù)

百分數(shù)(%)

相聲

小品

正正正一

歌曲

正正

舞蹈

正一

其中對這些節(jié)目類別的統(tǒng)計中,僅有一類節(jié)目的統(tǒng)計是完全正確的,該項統(tǒng)計類別是(

A.相聲B.小品C.歌曲D.舞蹈

【答案】D

【解析】

此題只需根據(jù)劃記的人數(shù)除以總人數(shù),正確計算百分比,即可進行分析判斷.

由統(tǒng)計表可得:

A. 相聲劃記應為5人,則百分數(shù)應為 ×100%=10%,故錯誤;

B. 小品劃記應為16人,則百分數(shù)應為×100%=32%,故錯誤;

C. 歌曲劃記為應10人,則百分數(shù)則百分數(shù)應為×100%=20%,故錯誤;

D. 舞蹈的劃記為6人是正確的,百分數(shù)為×100%=12%,百分數(shù)也正確,故正確。

故選D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小莉的家在錦江河畔的電梯公寓AD內,她家的河對岸新建了一座大廈BC,為了測量大廈的高度,小莉在她家的樓底A處測得大廈頂部B的仰角為60°,爬上樓頂D處測得大廈頂部B的仰角為30°,已知電梯公寓高82米,請你幫助小莉計算出大廈的高度BC及大廈與電梯公寓間的距離AC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖1,ABC中,∠A,PBC邊上的一點,,是點P關于ABAC的對稱點,連結,分別交AB、AC于點DE.

①若,求的度數(shù);

②請直接寫出∠A的數(shù)量關系:___________________________

(2)如圖2,在ABC中,若∠BAC,用三角板作出點P關于AB、AC的對稱點、(不寫作法,保留作圖痕跡),試判斷點,與點A是否在同一直線上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)求一次函數(shù)y=2x-2的圖象l1y=x-1的圖象l2的交點P的坐標.

2)求直線軸交點A的坐標; 求直線x軸的交點B的坐標;

3)求由三點P、AB圍成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,EAB邊上一點,且∠A=EDF=60°,有下列結論:①AE=BF;DEF是等邊三角形;③BEF是等腰三角形;④∠ADE=BEF,其中結論正確的個數(shù)是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有五張正面分別標有數(shù)字﹣2﹣1,0,1,2的卡片,它們除數(shù)字不同外其余全部相同.現(xiàn)將它們背面朝上,洗勻后從中隨機抽取一張,記卡片上的數(shù)字為a,則使關于x的一元二次方程x2﹣2a﹣1x+aa﹣3=0有兩個不相等的實數(shù)根,且以x為自變量的二次函數(shù)y=x2a2+1x﹣a+2的圖象不經(jīng)過點(10)的概率是__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校環(huán)保志愿者協(xié)會對該市城區(qū)的空氣質量進行調查,從全年365天中隨機抽取了80天的空氣質量指數(shù)(AQI)數(shù)據(jù),繪制出三幅不完整的統(tǒng)計圖表.請根據(jù)圖表中提供的信息解答下列問題:

AQI指數(shù)

質量等級

天數(shù)(天)

050

優(yōu)

m

51100

44

101150

輕度污染

n

151200

中度污染

4

201300

重度污染

2

300以上

嚴重污染

2

(1 )統(tǒng)計表中m= ,n= .扇形統(tǒng)計圖中,空氣質量等級為的天數(shù)占 %;

(2)補全條形統(tǒng)計圖,并通過計算估計該市城區(qū)全年空氣質量等級為優(yōu)的天數(shù)共多少天?

(3)據(jù)調查,嚴重污染的2天發(fā)生在春節(jié)期間,燃放煙花爆竹成為空氣污染的一個重要原因,據(jù)此,請你提出一條合理化建議.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是作一個角的角平分線的方法:以的頂點為圓心,以任意長為半徑畫弧,分別交兩點,再分別以為圓心,大于長為半徑作畫弧,兩條弧交于點,作射線,過點于點.

(1)若,求的度數(shù);

(2)若,垂足為,求證: .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD的對角線AC、BD相交于點O,分別作BE⊥AC于E,DF⊥AC于F,已知OE=OF,CE=AF.

(1)求證:△BOE≌△DOF;

(2)若,則四邊形ABCD是什么特殊四邊形?請說明理由.

查看答案和解析>>

同步練習冊答案