【題目】①解方程:3x(x﹣2)=2(x﹣2)
②已知在△ABC中,∠C=90°,AB=7,BC=5,求邊AC的長(zhǎng).

【答案】解:①3x(x﹣2)=2(x﹣2)

3x(x﹣2)﹣2(x﹣2)=0,

(x﹣2)(3x﹣2)=0,

x﹣2=0,3x﹣2=0,

x1=2,x2= ;

②∵在△ABC中,∠C=90°,AB=7,BC=5,

∴由勾股定理得:AC= = =2


【解析】(1)觀察已知的方程的特點(diǎn),由公因式(x-2),因此用提取公因式法求解。
(2)利用勾股定理求出AC的長(zhǎng)。
【考點(diǎn)精析】通過靈活運(yùn)用因式分解法和勾股定理的概念,掌握已知未知先分離,因式分解是其次.調(diào)整系數(shù)等互反,和差積套恒等式.完全平方等常數(shù),間接配方顯優(yōu)勢(shì);直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠BOC60°,OF平分∠BOC.AOBO,OE平分∠AOC,則∠EOF的度數(shù)是(  )

A. 45°

B. 15°

C. 30°60°

D. 45°15°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑, = ,且AB=5,BD=4,求弦DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,圖1表示的是某教育網(wǎng)站一周內(nèi)連續(xù)7天日訪問總量的情況,圖2表示的是學(xué)生日訪問量占訪問總量的百分比情況,觀察圖1、圖2,解答下列問題:

(1)若這7天的日訪問總量一共約為10萬人次,求星期三的日訪問總量;

(2)求星期日學(xué)生日訪問量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的圖象(折線)描述了一輛汽車在某一筆直的公路上的行駛過程中,汽車離出發(fā)地的距離(千米)與行駛時(shí)間(小時(shí))之間的函數(shù)關(guān)系,根據(jù)圖中提供的信息,給出下列說法:①汽車共行駛了140千米;②汽車在行駛途中停留了1小時(shí);③汽車出發(fā)后6小時(shí)至9小時(shí)之間行駛的速度比汽車出發(fā)后4小時(shí)至6小時(shí)之間行駛的速度大;④汽車出發(fā)后6小時(shí)至9小時(shí)之間行駛的速度在逐漸減。渲姓_的說法共有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的兩條對(duì)角線AC和BD相交于點(diǎn)O,并且BD=4,AC=6,BC=

(1)AC與BD有什么位置關(guān)系?為什么?
(2)四邊形ABCD是菱形嗎?為什么.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有兩個(gè)實(shí)數(shù)根x1 , x2
(1)求實(shí)數(shù)k的取值范圍;
(2)是否存在實(shí)數(shù)k使得x1x2﹣x12﹣x22≥0成立?若存在,請(qǐng)求出k的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線PA是一次函數(shù)yx+1的圖象,直線PB是一次函數(shù)y=﹣2x+2的圖象

(1)求A、B、P三點(diǎn)坐標(biāo).

(2)求△PAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】上海首條中運(yùn)量公交線路71路已正式開通.該線路西起滬青平公路申昆路,東至延安東路中山東一路,全長(zhǎng)17.5千米.71路車行駛于專設(shè)的公交車道,又配以專用的公交信號(hào)燈.經(jīng)測(cè)試,早晚高峰時(shí)段71路車在專用車道內(nèi)行駛的平均速度比在非專用車道每小時(shí)快6千米,因此單程可節(jié)省時(shí)間22.5分鐘.求早晚高峰時(shí)段71路車在專用車道內(nèi)行駛的平均車速.

查看答案和解析>>

同步練習(xí)冊(cè)答案