給出銳角△ABC,以AB為直徑的圓與AB邊的高CC′及其延長線交于M,N.以AC為直徑的圓與AC邊的高BB′及其延長線將于P,Q.求證:M,N,P,Q四點共圓.

證明:設PQ,MN交于K點,連接AP,AM.
由射影定理,得AM*AM=AC'*AB,AP*AP=AC*AB',又B、C、B'、C'四點共圓,
由切割線定理,AC'*AB=AC*AB',
∴AM=AP,又AM=AN,AP=AQ(垂直于直徑的弦性質(zhì)),
∴AM=AP=AN=AQ,M、N、P、Q是共圓心為A的圓.
須證MK•KN=PK•KQ,
即證(MC′-KC′)(MC′+KC′)
=(PB′-KB′)•(PB′+KB′)
或MC′2-KC′2=PB′2-KB′2.①
∵AP=AM(所對弧長相等),
從而有AB′2+PB′2=AC′2+MC′2
故MC′2-PB′2=AB′2-AC′2
=(AK2-KB′2)-(AK2-KC′2
=KC′2-KB′2.②
由②即得①,命題得證.
分析:由題意設PQ,MN交于K點,連接AP,AM.要證M,N,P,Q四點共圓,需證明MK•KN=PK•KQ,利用圓幾何關系和相交弦定理進行證明,從而求解.
點評:此題是一道競賽題難度比較大,多此用到相交弦定理,復雜的集合關系,需要同學靜下心來一步一步分析,不斷等價命題,進而求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

2、給出銳角△ABC,以AB為直徑的圓與AB邊的高CC′及其延長線交于M,N.以AC為直徑的圓與AC邊的高BB′及其延長線將于P,Q.求證:M,N,P,Q四點共圓.
(第19屆美國數(shù)學奧林匹克)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

17、如圖,以銳角△ABC的邊AB、AC向外作正方形APQB和正方形AEFC,連接PE,作AD⊥BC,垂足為D,延長DA交PE于點H.過P作PM⊥DM,垂足為M,過點E作EN⊥DM,垂足為N.
(1)不再增加線條或字母,在圖中找出一對全等三角形,并給出證明;
(2)求證:PH=HE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

將兩塊形狀大小完全相同的直角三角板按如圖1所示的方式拼在一起.它們中較小直角邊的長為6cm,較小銳角的度數(shù)為30°.
(1)將△ECD沿直線AC翻折到如圖2的位置,連接CF,圖中除了△ABC≌△ECD≌△ECD′外,還有沒有全等的三角形?若有,請指出一對并給出證明.
(2)以點C為坐標原點建立如圖3所示的直角坐標系,將△ECD沿x軸向左平移,使E點落在AB上,請求出點E′的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

將兩塊形狀大小完全相同的直角三角板按如圖1所示的方式拼在一起.它們中較小直角邊的長為6cm,較小銳角的度數(shù)為30°.

(1)將△ECD沿直線AC翻折到如圖2的位置,連接CF,圖中除了△ABC≌△ECD≌△ECD′外,還有沒有全等的三角形?若有,請指出一對并給出證明.
(2)以點C為坐標原點建立如圖3所示的直角坐標系,將△ECD沿x軸向左平移,使E點落在AB上,請求出點E′的坐標.
(3)若將△ECD繞點C按逆時針方向旋轉(zhuǎn)到圖4的位置,使E點落在AB上,E′D′交AC于點F,以點C為圓心,CF為半徑作⊙C,請判斷邊E′D′與⊙C的位置關系,并說明理由.

查看答案和解析>>

同步練習冊答案