【題目】1)在ABC中,∠BAC=60°,BC=4,則ABC面積的最大值是

2)已知:ABC,用無刻度的直尺和圓規(guī)求作DBC,使∠BDC+A=180°,且BD=DC.(注:不寫作法,保留作圖痕跡,對圖中涉及到的點用字母進行標(biāo)注,作出一個符合題意的三角形即可)

【答案】112;(2)如圖所示見解析.

【解析】

1)作AB、BC的垂直平分線,它們相交于點O,再以點O為圓心,OA為半徑作圓得到△ABC的外接圓,利用三角形面積公式得到當(dāng)點ABC的距離最大時,△ABC面積的最大,此時點A在優(yōu)弧BC的中點,利用圓周角定理可判斷△ABC為等邊三角形,然后利用等邊三角形的面積的計算方法可得到△ABC面積的最大值;

2BC的垂直平分線交BC弧于D,根據(jù)垂徑定理得到弧BD=弧CD,根據(jù)圓周角定理得到∠BDC+∠A180°,從而可判斷△DBC滿足條件.

解:(1)作△ABC的外接圓⊙O,

當(dāng)點ABC的距離最大時,△ABC面積的最大,此時點ABC的垂直平分線上,

如圖,點AA′時△ABC的面積最大,

∵∠BAC=∠BAC60°,

ABAC

∴△ABC為等邊三角形,

∴△ABC面積的最大值=×(4212

故答案為12,

2)如圖,△DBC為所作.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,點從點開始沿邊向點的速度移動,點從點開始沿邊向點以的速度移動.

1)如果點、分別從、同時出發(fā),幾秒鐘后,的面積等于?

2)在(1)中,的面積能否等于面積的一半?說明理由;

3)幾秒后,點,點相距?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一路燈距地面6.4米,身高1.6米的小方從距離燈的底部(點O5米的A處,沿OA所在的直線行走到點C時,人影長度增長3米,

求:(1)小方在A處時的影子AB的長;(2)小方行走的路程AC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點、點在直線上,反比例函數(shù))的圖象經(jīng)過點

1)求的值;

2)將線段向右平移個單位長度(),得到對應(yīng)線段,連接

①如圖2,當(dāng)時,過軸于點,交反比例函數(shù)圖象于點,求的值;

②在線段運動過程中,連接,若是以為腰的等腰三形,求所有滿足條件的的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,AD=5,AD、AB、BC分別與⊙O相切于E、F、G三點,過點D作⊙O的切線交BC于點M,則DM的長為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中, AB=AC=10,線段BC軸上,BC=12,點B的坐標(biāo)為(-3,0),線段AB軸于點E,過AADBCD,動點P從原點出發(fā),以每秒3個單位的速度沿軸向右運動,設(shè)運動的時間為秒.

1)當(dāng)BPE是等腰三角形時,求的值;

2)若點P運動的同時,ABCB為位似中心向右放大,且點C向右運動的速度為每秒2個單位,ABC放大的同時高AD也隨之放大,當(dāng)以EP為直徑的圓與動線段AD所在直線相切時,求的值和此時點C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,以為直徑的與邊,分別交于,兩點,過點于點

1)判斷的位置關(guān)系,并說明理由;

2)求證:的中點;

3)若,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店經(jīng)銷一種銷售成本為每千克40元的水產(chǎn)品,據(jù)市場分析,若每千克50元銷售,一個月能售出500kg,銷售單價每漲1元,月銷售量就減少10kg.

1)當(dāng)銷售單價定為每千克55元時,計算銷售量和月銷售利潤.

2)商品想在月銷售成本不超過10000元的情況下,使得月銷售利潤達到8000元,銷售單價應(yīng)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果點DE分別在ABC中的邊ABAC上,那么不能判定DEBC的比例式是( 。

A. ADDBAEEC B. DEBCADAB

C. BDABCEAC D. ABACADAE

查看答案和解析>>

同步練習(xí)冊答案