(12分) 如圖,在△ABC中,AB=AC,∠A=36°, BD是△ABC中∠ABC的平分線(xiàn).

(1)求∠ABC的度數(shù);

(2)找出圖中所有等腰三角形(等腰三角形ABC除外),并選其中一個(gè)寫(xiě)出推理過(guò)程;

(3)在直線(xiàn)BC上是否存在點(diǎn)P,使△CDP是以CD為一腰的等腰三角形?如果存在,請(qǐng)直接寫(xiě)出相應(yīng)的∠CPD的度數(shù);如果不存在,請(qǐng)說(shuō)明理由.

 

 

 

 

 

 

 

 

 

 

解:(1)∵在△ABC中,AB=AC

∴∠ABC=∠C

又∵∠A=36°

∴∠ABC=72°…………………………3分

(2)圖中的等腰三角形有:△ABD, △BCD .…………5分

推理過(guò)程略  ……………………………………9分  

(1)  在直線(xiàn)BC上存在點(diǎn)P,使△CDP是以CD為一腰的等腰

三角形. ∠CPD的度數(shù)為36°,54°,72°……12分

解析:略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本題滿(mǎn)分12分)

如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)與x軸的右交點(diǎn)為點(diǎn)A,與y

 

軸的交點(diǎn)為點(diǎn)B,過(guò)點(diǎn)B作x軸的平行線(xiàn)BC,交拋物線(xiàn)于點(diǎn)C,連結(jié)AC.現(xiàn)有兩動(dòng)點(diǎn)P,Q分別從O,C兩點(diǎn)同時(shí)出發(fā),點(diǎn)P以每秒4個(gè)單位的速度沿OA向終點(diǎn)A移動(dòng),點(diǎn)Q以每秒1個(gè)單位的速度沿CB向點(diǎn)B移動(dòng),點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也同時(shí)停止運(yùn)動(dòng),線(xiàn)段OC,PQ相交于點(diǎn)D,過(guò)點(diǎn)D作DE∥OA,交CA于點(diǎn)E,射線(xiàn)QE交x軸于點(diǎn)F.設(shè)動(dòng)點(diǎn)P,Q移動(dòng)的時(shí)間為t(單位:秒)

(1)求A,B,C三點(diǎn)的坐標(biāo)和拋物線(xiàn)的頂點(diǎn)的坐標(biāo);

(2)當(dāng)t為何值時(shí),四邊形PQCA為平行四邊形?

(3)請(qǐng)說(shuō)明當(dāng)0<t<4.5時(shí),△PQF的面積總為定值;

(4)當(dāng)0≤t≤4.5是否存在△PQF為等腰三角形?當(dāng)t為何值時(shí),△PQF為等腰三角形?(直接寫(xiě)出結(jié)果)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年湖北省黃岡市初一上學(xué)期期末模擬數(shù)學(xué)卷 題型:解答題

(本題滿(mǎn)分12分)
如圖,在△ABC中,AD平分∠BAC.

(1)若AC=BC,∠B︰∠C=2︰1,試寫(xiě)出圖中的所有等腰三角形,并給予證明.
(2)若ABBD=AC,求∠B︰∠C 的比值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年初中畢業(yè)升學(xué)考試(四川瀘州卷)數(shù)學(xué)(解析版) 題型:解答題

(2013年四川瀘州12分)如圖,在直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(﹣2,0),點(diǎn)B的坐標(biāo)為(1,),已知拋物線(xiàn)y=ax2+bx+c(a≠0)經(jīng)過(guò)三點(diǎn)A、B、O(O為原點(diǎn)).

(1)求拋物線(xiàn)的解析式;

(2)在該拋物線(xiàn)的對(duì)稱(chēng)軸上,是否存在點(diǎn)C,使△BOC的周長(zhǎng)最小?若存在,求出點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

(3)如果點(diǎn)P是該拋物線(xiàn)上x(chóng)軸上方的一個(gè)動(dòng)點(diǎn),那么△PAB是否有最大面積?若有,求出此時(shí)P點(diǎn)的坐標(biāo)及△PAB的最大面積;若沒(méi)有,請(qǐng)說(shuō)明理由.(注意:本題中的結(jié)果均保留根號(hào))

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年初中畢業(yè)升學(xué)考試(廣東廣州卷)數(shù)學(xué)解析版 題型:解答題

(2011廣西梧州,26,12分)如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=6cm,AB=8cm,BC=14cm.動(dòng)點(diǎn)P、Q都從點(diǎn)C出發(fā),點(diǎn)P沿C→B方向做勻速運(yùn)動(dòng),點(diǎn)Q沿C→D→A方向做勻速運(yùn)動(dòng),當(dāng)P、Q其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).

(1)求CD的長(zhǎng);

(2)若點(diǎn)P以1cm/s速度運(yùn)動(dòng),點(diǎn)Q以cm/s的速度運(yùn)動(dòng),連接BQ、PQ,設(shè)△BQP面積為S(cm2),點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間為t(s),求S與t的函數(shù)關(guān)系式,并寫(xiě)出t的取值范圍;

(3)若點(diǎn)P的速度仍是1cm/s,點(diǎn)Q的速度為acm/s,要使在運(yùn)動(dòng)過(guò)程中出現(xiàn)PQ∥DC,請(qǐng)你直接寫(xiě)出a的取值范圍.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年四川省成都市溫江區(qū)初三第一學(xué)期期末數(shù)學(xué)卷 題型:解答題

(本題滿(mǎn)分12分)

如圖,在單位長(zhǎng)度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過(guò)網(wǎng)格的交點(diǎn)A、B、C.

(1)請(qǐng)完成如下操作:

①以點(diǎn)O為原點(diǎn)、豎直和水平方向?yàn)檩S、網(wǎng)格邊長(zhǎng)為單位長(zhǎng),建立平面直角坐標(biāo)系; ②根據(jù)圖形提供的信息,標(biāo)出該圓弧所在圓的圓心D,

   并連結(jié)AD、CD.

(2)請(qǐng)?jiān)冢?)的基礎(chǔ)上,完成下列填空:

①寫(xiě)出點(diǎn)的坐標(biāo):C         、D           ;

②⊙D的半徑=            (結(jié)果保留根號(hào));

③若扇形ADC是一個(gè)圓錐的側(cè)面展開(kāi)圖,則該圓錐的底面的面積為         ;(結(jié)果保留

(3)若E(7,0),試判斷直線(xiàn)EC與⊙D的位置關(guān)系,并說(shuō)明你的理由

 

查看答案和解析>>

同步練習(xí)冊(cè)答案