【題目】先化簡(jiǎn),再求值:(x+5)(x-1+x-22,其中x=-2

【答案】7.

【解析】

根據(jù)多項(xiàng)式乘多項(xiàng)式、完全平方公式可以化簡(jiǎn)題目中的式子,然后將x的值代入化簡(jiǎn)后的式子即可解答本題.

解:(x+5)(x-1+x-22

=x2+4x-5+x2-4x+4

=2x2-1,

當(dāng)x=-2時(shí),原式=2×(-22-1=8-1=7

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P2a-6,a),若點(diǎn)Px軸上,則點(diǎn)P的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校在九年級(jí)學(xué)生中開(kāi)展以“每天數(shù)學(xué)家庭作業(yè)完成時(shí)間”設(shè)置的一個(gè)問(wèn)題,有以下選項(xiàng):

A.0~0.5小時(shí)B.0.5~1個(gè)小時(shí) C.1個(gè)小時(shí)~1.5個(gè)小時(shí) D.1.5個(gè)小時(shí)以上

在隨機(jī)調(diào)查了九(1)班學(xué)生后,根據(jù)相關(guān)數(shù)據(jù)給出如圖所示的統(tǒng)計(jì)圖.

(1)該校九(1)班學(xué)生 人;做數(shù)學(xué)家庭作業(yè)1.5個(gè)小時(shí)以上的占

(2)補(bǔ)全頻數(shù)直方圖;

(3)已知該校九年級(jí)共400名學(xué)生,據(jù)此推算,該校九年級(jí)學(xué)生中,“做數(shù)學(xué)家庭作業(yè)1.5個(gè)小時(shí)以上”的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解答
(1)已知,如圖①,在△ABC中,∠BAC=90°,AB=AC,直線(xiàn)m經(jīng)過(guò)點(diǎn)A,BD⊥直線(xiàn)m,CE⊥直線(xiàn)m,垂足分別為點(diǎn)D、E,求證:DE=BD+CE.

(2)如圖②,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線(xiàn)m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意鈍角,請(qǐng)問(wèn)結(jié)論DE=BD+CE是否成立?若成立,請(qǐng)你給出證明:若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于二次函數(shù)yx2+2x1的圖象與性質(zhì),下列說(shuō)法中正確的是( 。

A.頂點(diǎn)坐標(biāo)為(12

B.當(dāng)x<﹣1時(shí),yx的增大而增大

C.對(duì)稱(chēng)軸是直線(xiàn)x=﹣1

D.最小值是﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在Rt△ABC中,∠C=90°, ∠B=30°,AC=1,CDAB,垂足為D,現(xiàn)將△ACDD點(diǎn)順時(shí)針旋轉(zhuǎn)得到△ACD, 旋轉(zhuǎn)時(shí)間為t秒,△ACDD點(diǎn)旋轉(zhuǎn)的角速度/秒(每秒轉(zhuǎn)10度) .

(1)旋轉(zhuǎn)時(shí)間t= 秒時(shí),ACAB;

(2)△ACD繞D點(diǎn)順時(shí)針旋轉(zhuǎn)一周(3600),斜邊AC掃過(guò)的面積為

(3)如圖②,連接AC、 CB

①若6<t<9,求證: 為定值;

②當(dāng)t>9時(shí),上述結(jié)論還成立嗎?如成立直接寫(xiě)出比值,不成立請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖,在數(shù)軸上點(diǎn) 所對(duì)應(yīng)的數(shù)是,

對(duì)于關(guān)于的代數(shù)式,我們規(guī)定:當(dāng)有理數(shù)在數(shù)軸上所對(duì)應(yīng)的點(diǎn)為之間(包括點(diǎn), )的任意一點(diǎn)時(shí),代數(shù)式取得所有值的最大值小于等于,最小值大于等于,則稱(chēng)代數(shù)式,是線(xiàn)段的封閉代數(shù)式.

例如,對(duì)于關(guān)于的代數(shù)式,當(dāng)時(shí),代數(shù)式取得最大值是;當(dāng)時(shí),代數(shù)式取得最小值是,所以代數(shù)式是線(xiàn)段的封閉代數(shù)式.

問(wèn)題:()關(guān)于代數(shù)式,當(dāng)有理數(shù)在數(shù)軸上所對(duì)應(yīng)的點(diǎn)為之間(包括點(diǎn), )的任意一點(diǎn)時(shí),取得的最大值和最小值分別是__________.

所以代數(shù)式__________(填是或不是)線(xiàn)段的封閉代數(shù)式.

)以下關(guān)的代數(shù)式:

;;

是線(xiàn)段的封閉代數(shù)式是__________,并證明(只需要證明是線(xiàn)段的封閉代數(shù)式的式子,不是的不需證明).

)關(guān)于的代數(shù)式是線(xiàn)段的封閉代數(shù)式,則有理數(shù)的最大值是__________,最小值是__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線(xiàn)y=kx+2與x軸、y軸分別交于點(diǎn)A(-1,0)和點(diǎn)B,與反比例函數(shù)y=的圖象在第一象限內(nèi)交于點(diǎn)C(1,n).

(1)求k的值;

(2)求反比例函數(shù)的解析式;

(3)過(guò)x軸上的點(diǎn)Da,0)作平行于y軸的直線(xiàn)a>1),分別與直線(xiàn)AB和雙曲線(xiàn) 交于點(diǎn)P、Q,且PQ=2QD,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A、B、C的坐標(biāo)分別為(-1,0),(5,0),(0,2).

(1)求過(guò)A、B、C三點(diǎn)的拋物線(xiàn)解析式;

(2)若點(diǎn)P從A點(diǎn)出發(fā),沿x軸正方向以每秒1個(gè)單位長(zhǎng)度的速度向B點(diǎn)移動(dòng),連接PC并延長(zhǎng)到點(diǎn)E,使CE=PC,將線(xiàn)段PE繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°得到線(xiàn)段PF,連接FB.若點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒(0≤t≤6),設(shè)△PBF的面積為S;

①求S與t的函數(shù)關(guān)系式;

②當(dāng)t是多少時(shí),△PBF的面積最大,最大面積是多少?

(3)點(diǎn)P在移動(dòng)的過(guò)程中,△PBF能否成為直角三角形?若能,直接寫(xiě)出點(diǎn)F的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案