【題目】為響應國家要求中小學生每天鍛煉1小時的號召,某校開展了形式多樣的“陽光體育運動”活動,小明從學校同學中隨機抽取一部分同學,對他們參加鍛煉的情況進行了統(tǒng)計,并繪制了下面的統(tǒng)計圖(1)和圖(2),請根據(jù)所繪制的統(tǒng)計圖回答下面問題:
(1)在此次調查中,小明共調查了位同學;
(2)請在圖(1)中將“乒乓球”部分的圖形補充完整;
(3)圖(2)中表示“足球”的扇形的圓心角的度數(shù)為
(4)如果該學校共有學生1200人,則參加“籃球”運動項目的人數(shù)約有

【答案】
(1)50
(2)解:由題意可得,

參加乒乓球的人數(shù)為:50﹣20﹣10﹣15=5(人),

補全的條形統(tǒng)計圖,如圖所示;


(3)72°
(4)480
【解析】解:(1.)由題意可得,在此次調查中,小明共調查了:20÷40%=50(位)同學, 故答案為:50;
(3.)由題意可得,圖(2)中表示“足球”的扇形的圓心角的度數(shù)為:360°× =72°,
故答案為:72°;
(4.)由題意可得,如果該學校共有學生1200人,則參加“籃球”運動項目的人數(shù)約有:1200× =480(人),
故答案為:480.
(1)根據(jù)條形統(tǒng)計圖和扇形統(tǒng)計圖中的數(shù)據(jù)可以求得本次調查的學生數(shù);(2)根據(jù)(1)中的答案和條形統(tǒng)計圖中的數(shù)據(jù)可以求得參加乒乓球的人數(shù),從而可以將條形統(tǒng)計圖補充完整;(3)根據(jù)條形統(tǒng)計圖中的數(shù)據(jù)和(1)中的答案可以求得圖(2)中表示“足球”的扇形的圓心角的度數(shù);(4)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以求得參加“籃球”運動項目的人數(shù).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在△ABC中,∠ACB=90°,BC=2,∠A=30°,點E,F(xiàn)分別是線段BC,AC的中點,連接EF.

(1)說明線段BE與AF的位置關系和數(shù)量關系;
(2)如圖②,當△CEF繞點C順時針旋轉α(0°<α<90°)時,連接AF,BE,(1)中的結論是否仍然成立?如果成立,請證明;如果不成立,請說明理由;
(3)如圖③,當△CEF繞點C順時針旋轉α(0°<α<180°)時,延長FC交AB于點D,如果AD=6﹣2 ,求旋轉角α的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,下列能判定AB∥CD的條件有( )個.

1∠B+∠BCD=180°;(2∠1=∠2;(3∠3=∠4;(4∠B=∠5

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線x軸交于點,直線x軸、y軸分別交于B、C兩點,并與直線相交于點D,若

求點D的坐標;

求出四邊形AOCD的面積;

Ex軸上一點,且為等腰三角形,寫出點E的坐標直接寫出答案

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象的一部分過點A(5,0),對稱軸為直線x=1,則下列結論中錯誤的是(
A.abc<0
B.當x<1時,y隨x的增大而增大
C.4a﹣2b+c<0
D.方程ax2+bx+c=0的根為x1=﹣3,x2=5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,直線AB與x、y軸分別交于點A(4,0)、B(0, )兩點,∠BAO的角平分線交y軸于點D,點C為直線AB上一點以AC為直徑的⊙G經(jīng)過點D,且與x軸交于另一點E.
(1)求證:y軸是⊙G的切線.
(2)求出⊙G的半徑;
(3)連結EC,求△ACE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,給出五個等量關系:①AD=BC AC=BD CE=DE ④∠D=C ⑤∠DAB=CBA.請你以其中兩個為條件,另三個中的一個為結論,推出一個正確的結論(只需寫出一種情況),并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某河道A,B兩個碼頭之間有客輪和貨輪通行一天,客輪從A碼頭勻速行駛到B碼頭,同時貨輪從

B碼頭出發(fā),運送一批建材勻速行駛到A碼頭兩船距B碼頭的距離千米與行駛時間之間的函數(shù)關系

如圖所示請根據(jù)圖象解決下列問題:

分別求客輪和貨輪距B碼頭的距離千米、千米之間的函數(shù)關系式;

求點M的坐標,并寫出該點坐標表示的實際意義.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AD平分∠BAC,CDAD于點D,DCB=B.若AC=10,AB=25,求CD的長.

查看答案和解析>>

同步練習冊答案