【題目】我們都知道連接多邊形任意不相鄰的兩點的線段成為多邊形的對角線,也都知道四邊形的對角線有2條,五邊形的對角線有5條
(1)六邊形的對角線有 條,七邊形的對角線有 條;
(2)多邊形的對角線可以共有20條嗎?如果可以,求出多邊形的邊數(shù),如果不可以,請說明理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,過點B作BM⊥AB,弦CD∥BM,交AB于點F,且DA=DC,連接AC,AD,延長AD交BM于點E.
(1)求證:△ACD是等邊三角形;
(2)若AC=,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】京沈高速鐵路赤峰至喀左段正在建設(shè)中,甲、乙兩個工程隊計劃參與一項工程建設(shè),甲隊單獨施工30天完成該項工程的,這時乙隊加入,兩隊還需同時施工15天,才能完成該項工程.
(1)若乙隊單獨施工,需要多少天才能完成該項工程?
(2)若甲隊參與該項工程施工的時間不超過36天,則乙隊至少施工多少天才能完成該項工程?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小聰和小明沿同一條路同時從學(xué)校出發(fā)到學(xué)校圖書館查閱資料,學(xué)校與圖書館的路程是千米,小聰騎自行車,小明步行,當(dāng)小聰從原路回到學(xué)校時,小明剛好到達(dá)圖書館,圖中折線和線段分別表示兩人離學(xué)校的路程(千米)與所經(jīng)過的時間(分鐘)之間的函數(shù)關(guān)系,請根據(jù)圖象回答下列問題:
(1)小聰在圖書館查閱資料的時間為 分鐘,小聰返回學(xué)校的速度為 千米/分鐘;
(2)請你求出小明離開學(xué)校的路程(千米)與所經(jīng)過的時間(分鐘)之間的函數(shù)關(guān)系;
(3)求線段的函數(shù)關(guān)系式;
(4)當(dāng)小聰與小明迎面相遇時,他們離學(xué)校的路程是多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=x2+bx+c的圖象交x軸于A、D兩點,并經(jīng)過B點,已知A點坐標(biāo)是(2,0),B點的坐標(biāo)是(8,6).
(1)求二次函數(shù)的解析式.
(2)求函數(shù)圖象的頂點坐標(biāo)及D點的坐標(biāo).
(3)該二次函數(shù)的對稱軸交x軸于C點.連接BC,并延長BC交拋物線于E點,連接BD,DE,求△BDE的面積.
(4)拋物線上有一個動點P,與A,D兩點構(gòu)成△ADP,是否存在S△ADP=S△BCD?若存在,請求出P點的坐標(biāo);若不存在.請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從寧?h到某市,可乘坐普通列車或高鐵,已知高鐵的行駛路程與普通列車的行駛路程之和是920千米,而普通列車的行駛路程是高鐵的行駛路程的1.3倍.
(1)求普通列車的行駛路程;
(2)若高鐵的平均速度(千米/時)是普通列車的平均速度(千米/時)的2.5倍,且乘坐高鐵所需時間比乘坐普通列車所需時間縮短3小時,求高鐵的平均速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實踐
問題發(fā)現(xiàn)
如圖,中,平分,平分,經(jīng)過點,與、相交于點、,且.
求證:的周長等于.
(1)小明做完該題后,發(fā)現(xiàn)、、存在特定的數(shù)量關(guān)系,請你直接寫出這個數(shù)量關(guān)系;
拓廣探索
(2)如圖1,將題中“平分”改為“平分的外角”,其他條件不變,請判斷、、的數(shù)量關(guān)系,并證明這個數(shù)量關(guān)系;
(3)如圖2,將題中“平分,平分”改為“平分的外角,平分的外角”,其他條件不變,請直接寫出、、的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖①,在平行四邊形ABCD中,AB=3cm,BC=5cm,AC⊥AB.△ACD沿AC的方向勻速平移得到△PNM,速度為1cm/s;同時,點Q從點C出發(fā),沿著CB方向勻速移動,速度為1cm/s;當(dāng)△PNM停止平移時,點Q也停止移動,如圖②.設(shè)移動時間為t(s)(0<t<4).連接PQ、MQ、MC.解答下列問題:
(1)當(dāng)t為何值時,PQ∥AB?
(2)當(dāng)t=3時,求△QMC的面積;
(3)是否存在某一時刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AE是△ABC的角平分線;ED平分∠AEB交AB于點D;∠CAE=∠B.
(1)如果AC=3.5 cm,求AB的長度;
(2)猜想:ED與AB的位置關(guān)系,并證明你的猜想。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com