【題目】已知:⊙O的兩條弦,相交于點,且.
(1)如圖1,連接,求證:.
(2)如圖2,在,在上取一點,使得,交于點,連接.
①判斷與是否相等,并說明理由.
②若,,求的面積.
【答案】(1)見解析;(2)①相等,理由見解析;②.
【解析】
(1)根據(jù)弦,弧之間的關(guān)系得出,進而有,然后根據(jù)圓周角定理的推論即可得出,則結(jié)論可證;
(2)①連接AC,首先證明≌,則有,然后根據(jù),和等量代換即可得出結(jié)論;
(3)設(shè),則,然后利用DM=x+7和AM=DM建立一個關(guān)于x的方程,解方程即可求出x的值,從而AM可求,最后利用即可求解.
(1)∵,
,
,
∴,
∴;
(2)①相等,理由如下:
如圖:連接AC,
∴,
又∵,
∴,
又∵AM=AM,
∴≌(ASA)
∴,
又∵,
∴;
②由(1)知AM=DM,
設(shè),
,
,
由①知:,
∴,
∵DE=7,
∴DF=7,
則:DM=x+7,
由AM=DM,得:17-x=x+7,解得:x=5,
∴AM=17-5=12,
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為提高學(xué)生身體素質(zhì),某校決定開展足球、籃球、排球、兵乓球等四項課外體育活動,要求全員參與,并且每名學(xué)生只能選擇其中一項.為了解選擇各種體育活動項目的學(xué)生人數(shù),該校隨機抽取了部分學(xué)生進行調(diào)查,并繪制出如下兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答下列問題:
(1)直接寫出這次抽樣調(diào)查的學(xué)生人數(shù);
(2)補全條形統(tǒng)計圖;
(3)若該學(xué)??cè)藬?shù)是1500人,請估計選擇籃球項目的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校七、八年級各有300名學(xué)生,近期對他們“2020年新型冠狀病毒”防治知識進行了線上測試,為了了解他們的掌握情況,從七、八年級各隨機抽取了50名學(xué)生的成績(百分制),并對數(shù)據(jù)(成績)進行整理、描述和分析.下面給出了部分信息:
a.七年級的頻數(shù)分布直方圖如下(數(shù)據(jù)分為5組:50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):
b.七年級學(xué)生成績在80≤x<90的這一組是:
80 80.5 81 82 82 83 83.5 84
84 85 86 86.5 87 88 89 89
c.七、八年級學(xué)生成績的平均數(shù)、中位數(shù)、眾數(shù)如下:
年級 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
七年級 | 85.3 | m | 90 |
八年級 | 87.2 | 85 | 91 |
根據(jù)以上信息,回答下列問題:
(1)表中m的值為 ;
(2)在隨機抽樣的學(xué)生中,防治知識成績?yōu)?/span>84分的學(xué)生,在 年級排名更靠前,理由是 ;
(3)若各年級防治知識的前90名將參加線上防治知識競賽,預(yù)估七年級分數(shù)至少達到 分的學(xué)生才能入選;
(4)若85分及以上為“優(yōu)秀”,請估計七年級達到“優(yōu)秀”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在網(wǎng)格紙中,、都是格點,以為圓心,為半徑作圓,用無刻度的直尺完成以下畫圖:(不寫畫法)
(1)在圓①中畫圓的一個內(nèi)接正六邊形;
(2)在圖②中畫圓的一個內(nèi)接正八邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,點E是直線AB上的點,過點E的直線l交直線CD于點F,EG平分∠BEF交CD于點G.在直線l繞點E旋轉(zhuǎn)的過程中,圖中∠1,∠2的度數(shù)可以分別是( )
A.30°,110°B.56°,70°C.70°,40°D.100°,40°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC,BD為四邊形ABCD的對角線,AC⊥BC,AB⊥AD,CA=CD.若tan∠BAC=.則tan∠DBC的值是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,拋物線與軸交于點A,將點A向右平移2個單位長度,得到點B,點B在拋物線上.
(1)求點B的坐標(用含的式子表示);
(2)求拋物線的對稱軸;
(3)已知點,.若拋物線與線段PQ恰有一個公共點,結(jié)合函數(shù)圖象,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,為直徑,CD與相較于點H,弧AC=弧AD
(1)如圖1,求證:;
(2)如圖2,弧BC上有一點E,若弧CD=弧CE,求證:;
(3)如圖3,在(2)的條件下,點F在上,連接,延長FO交于點K,若,求.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,直線與軸交于點,與軸交于點,拋物線經(jīng)過,兩點,與軸的另一交點為點.
(1)求拋物線的函數(shù)表達式;
(2)點為直線下方拋物線上一動點.
①如圖2所示,直線交線段于點,求的最小值;
② 如圖3所示,連接過點作于,是否存在點,使得中的某個角恰好等于的2倍?若存在,求點的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com