【題目】如圖,拋物線y=a(x﹣m﹣1)2+2m(其中m>0)與其對稱軸l相交于點P.與y軸相交于點A(0,m)連接并延長PA、PO,與x軸、拋物線分別相交于點B、C,連接BC將△PBC繞點P逆時針旋轉,使點C落在拋物線上,設點C、B的對應點分別是點B′和C′.
(1)當m=1時,該拋物線的解析式為: .
(2)求證:∠BCA=∠CAO;
(3)試問:BB′+BC﹣BC′是否存在最小值?若存在,求此時實數(shù)m的值,若不存在,請說明理由.
【答案】(1)y=﹣x2+x+1;(2)見解析;(3)BB′+BC﹣BC′存在最小值,m=1+.
【解析】
(1)把點A的坐標代入二次函數(shù)表達式得:m=a(﹣m﹣1)2+2m,解得:a=﹣,把m=1代入上式,即可求解;
(2)求出點B、C的坐標,即可求解;
(3)當點B′落在BC′所在的直線時,BB′+BC﹣BC′存在最小值,證△BAO∽△POD,即可求解.
解:(1)把點A的坐標代入二次函數(shù)表達式得:m=a(﹣m﹣1)2+2m,解得:a=﹣,
則二次函數(shù)的表達式為:y=﹣(x﹣m﹣1)2+2m…①,
則點P的坐標為(m+1,2m),點A的坐標為(0,m),
把m=1代入①式,整理得:y=﹣x2+x+1,
故:答案為:y=﹣x2+x+1;
(2)把點P、A的坐標代入一次函數(shù)表達式:y=kx+b得:
,解得:,
則直線PA的表達式為:y=x+m,
令y=0,解得:x=﹣m﹣1,即點B坐標為(﹣m﹣1,0),
同理直線OP的表達式為:y=x…②,
將①②聯(lián)立得:a(x﹣m﹣1)2+2m﹣x=0,其中a=﹣,
該方程的常數(shù)項為:a(m+1)2+2m,
由韋達定理得:x1x2=xCxP===﹣(m+1)2,
其中
則xC=﹣m﹣1=xB,
∴BC∥y軸,
∴∠BCA=∠CAO;
(3)如圖當點B′落在BC′所在的直線時,BB′+BC﹣BC′存在最小值,
設:直線l與x軸的交點為D點,連接BB′、CC′,
∵點C關于l的對稱點為C′,
∴CC′⊥l,而OD⊥l,∴CC′∥OD,∴∠POD=∠PCC′,
∵∠PB′C′+∠PB′B=180°,
△PB′C′由△PBC旋轉而得,
∴∠PBC=∠PB′C′,PB=PB′,∠BPB′=∠CPC′,
∴∠PBC+∠PB′B=180°,
∵BC∥AO,
∴∠ABC+∠BAO=180°,
∴∠PB′B=∠BAO,
∵PB=PB′,PC=PC′,
∴∠PB′B=∠PBB′=,
∴∠PCC′=∠PC′C=,
∴∠PB′B=∠PCC′,
∴∠BAO=∠PCC′,
而∠POD=∠PCC′,
∴∠BAO=∠POD,
而∠POD=∠BAO=90°,
∴△BAO∽△POD,
∴,
將BO=m+1,PD=2m,AO=m,OD=m+1代入上式并解得:
m=1+(負值已舍去).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c與x軸交于點A,B,AB=2,與y軸交于點C,對稱軸為直線x=2.
(1)求拋物線的函數(shù)表達式;
(2)根據(jù)圖像,直接寫出不等式x2+bx+c>0的解集: .
(3)設D為拋物線上一點,E為對稱軸上一點,若以點A,B,D,E為頂點的四邊形是菱形,則點D的坐標為: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一座拱橋的輪廓是拋物線型(如圖1所示),拱高6m,跨度20m,相鄰兩支柱間的距離均為5m.
(1)將拋物線放在所給的直角坐標系中(如圖2所示),其表達式是y=ax2+c的形式.請根據(jù)所給的數(shù)據(jù)求出a,c的值.
(2)求支柱MN的長度.
(3)拱橋下地平面是雙向行車道(正中間是一條寬2m的隔離帶),其中的一條行車道能否并排行駛寬2m、高3m的三輛汽車(汽車間的間隔忽略不計)?請說說你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,CD是中線,AC=BC,一個以點D為頂點的45°角繞點D旋轉,使角的兩邊分別與AC、BC的延長線相交,交點分別為點E,F,DF與AC交于點M,DE與BC交于點N.
(1)如圖1,若CE=CF,求證:DE=DF;
(2)如圖2,在∠EDF繞點D旋轉的過程中:
①探究三條線段AB,CE,CF之間的數(shù)量關系,并說明理由;
②若CE=4,CF=2,求DN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線的對稱軸是直線x=﹣1,與x軸一個交點是點A(﹣3,0),且經(jīng)過點B(﹣2,6)
(1)求該拋物線的解析式;
(2)若點(﹣,y1)與點(2,y2)都在該拋物線上,直接寫出y1與y2的大小關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,,,以點A為旋轉中心,逆時針旋轉矩形ABCD,旋轉角為,得到矩形AEFG,點B、點C、點D的對應點分別為點E、點F、點G.
如圖,當點E落在DC邊上時,直寫出線段EC的長度為______;
如圖,當點E落在線段CF上時,AE與DC相交于點H,連接AC,
求證:≌;
直接寫出線段DH的長度為______.
如圖設點P為邊FG的中點,連接PB,PE,在矩形ABCD旋轉過程中,的面積是否存在最大值?若存在請直接寫出這個最大值;若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“垃圾分一分,明天美十分”.環(huán)保部門計劃訂制一批垃圾分類宣傳海報,海報版面不小于300平方米,當宣傳海報的版面為300平方米時,價格為80元/平方米.為了支持垃圾分類促進環(huán)保,廣告公司給予以下優(yōu)惠:宣傳海報版面每增加1平方米,每平方米的價格減少0.2元,但不能低于50元/平方米.假設宣傳海報的版面增加平方米后,總費用為元.
(1)求關于的函數(shù)表達式;
(2)訂制宣傳海報的版面為多少平方米時總費用最高?最高費用為多少元?
(3)環(huán)保部門希望總費用盡可能低,那么應該訂制多少平方米的海報?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠CAB=70°,在同一平面內(nèi),將△ABC繞點A旋轉到△AB'C'的位置,使得C′C∥AB,則∠CAB'等于( )
A. 30°B. 25°C. 15°D. 10°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com