【題目】根據(jù)以下信息,解答下列問題.

1)小華同學設乙型機器人每小時搬運xkg產(chǎn)品,可列方程為

小惠同學設甲型機器人搬運800kg所用時間為y小時,可列方程為

2)請你按照(1)中小華同學的解題思路,寫出完整的解答過程.

【答案】1,;(2)詳見解析

【解析】

(1)直接利用甲型機器人搬運800kg所用的時間與乙型機器人搬運600kg所用的時間相等以及甲型機器人比乙型機器人每小時多搬運10kg分別得出等式;

(2)利用分式方程的解法進而計算得出答案.

解:(1)小華同學設乙型機器人每小時搬運xkg產(chǎn)品,可列方程為,

小惠同學設甲型機器人搬運800kg所用時間為y小時,可列方程為,

(2)設乙型機器人每小時搬運kg產(chǎn)品,根據(jù)題意得

,

解得,經(jīng)檢驗,是原方程的解且符合題意.

答:乙型機器人每小時搬運30kg產(chǎn)品.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD的周長為22m,對角線ACBD交于點O,過點OAC垂直的直線交邊AD于點E,則△CDE的周長為( 。

A. 8cmB. 9cmC. 10cmD. 11cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖AMBN,CBN上一點, BD平分∠ABN且過AC的中點O,交AM于點D,DEBD,交BN于點E

1)求證:ADO≌△CBO

2)求證:四邊形ABCD是菱形.

3)若DE = AB = 2,求菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)學活動課上,王老師出示一道數(shù)學題目:“在平面直角坐標系中,當為何值時,拋物線與直線段唯一公共點或有兩個公共點?”某學習小組經(jīng)探究得到以下四個結論:

①當時,有唯一公共點;

②若為整數(shù),則僅當的值為4567時,才有唯一公共點;

③若為整數(shù),則當的值為123時,有兩個公共點;

④當時,有兩個公共點.其中正確的結論有(

A.①②④B.①②③C.①③D.①④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】受國內(nèi)外復雜多變的經(jīng)濟環(huán)境影響,去年17月,原材料價格一路攀升,長沙市某服裝廠每件衣服原材料的成本y1(元)與月份x1≤x≤7,且x為整數(shù))之間的函數(shù)關系如下表:

月份x

1

2

3

4

5

6

7

成本(元/件)

56

58

60

62

64

66

68

812月,隨著經(jīng)濟環(huán)境的好轉,原材料價格的漲勢趨緩,每件原材料成本y2(元)與月份x的函數(shù)關系式為y2=x+628≤x≤12,且x為整數(shù)).

1)請觀察表格中的數(shù)據(jù),用學過的函數(shù)相關知識求y1x的函數(shù)關系式.

2)若去年該衣服每件的出廠價為100元,生產(chǎn)每件衣服的其他成本為8元,該衣服在17月的銷售量p1(萬件)與月份x滿足關系式p1=0.1x+1.11≤x≤7,且x為整數(shù)); 812月的銷售量p2(萬件)與月份x滿足關系式p2=0.1x+38≤x≤12,且x為整數(shù)),該廠去年哪個月利潤最大;并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點坐標為,點軸的負半軸上,點、均在線段上,且,點的橫坐標為.在中,若軸,軸,則稱為點、的“榕樹三角形”.

1)若點坐標為,且,則點、的“榕樹三角形”的面積為

2)當點、的“榕樹三角形”是等腰三角形時,求點的坐標.

3)在(2)的條件下,作過、三點的拋物線

①若點必為拋物線上一點,求點、的“榕樹三角形”面積之間的函數(shù)關系式.

②當點的“榕樹三角形”面積2,且拋物線與點、的“榕樹三角形”恰有兩個交點時,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AD>AB,連接AC,將線段AC繞點A順時針旋轉90得到線段AE,平移線段AE得到線段DF(A與點D對應,點E與點F對應),連接BF,分別交直線AD,AC于點G,M,連接EF

(1) 依題意補全圖形;

(2) 求證:EGAD

(3) 連接EC,交BF于點N,若AB=2,BC=4,設MB=aNF=b,試比較之間的大小關系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點在反比例函數(shù)的圖象上,過點軸,垂足為,直線經(jīng)過點,與軸交于點,且,.

(1)求反比例函數(shù)和一次函數(shù)的表達式;

(2)直接寫出關于的不等式的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在菱形ABCD中,對角線ACBD相交于點O,DEACAEBD

1)求證:四邊形AODE是矩形;

2)若AB2,∠BCD120°,求四邊形AODE的面積.

查看答案和解析>>

同步練習冊答案