【題目】在數(shù)學活動課上,王老師出示一道數(shù)學題目:“在平面直角坐標系中,當為何值時,拋物線與直線段唯一公共點或有兩個公共點?”某學習小組經(jīng)探究得到以下四個結(jié)論:

①當時,有唯一公共點;

②若為整數(shù),則僅當的值為4567時,才有唯一公共點;

③若為整數(shù),則當的值為123時,有兩個公共點;

④當時,有兩個公共點.其中正確的結(jié)論有(

A.①②④B.①②③C.①③D.①④

【答案】B

【解析】

根據(jù)拋物線表達式得出其對稱軸,分別求出拋物線和直線段有不同交點數(shù)時對應(yīng)的c的值,從而判斷各個選項.

解:由拋物線表達式得:,對稱軸為直線x=2

如圖,當時,,聯(lián)立,

得:,變形得:,

解得:x1=x2=

∴此時拋物線和直線段只有一個交點,故①正確;

如圖,當拋物線經(jīng)過直線段與y軸交點時,

x=0代入y=x+3,得y=3,

此時拋物線過(0,3),

c=3,

如圖,當拋物線經(jīng)過直線段右側(cè)端點時,

x=4代入y=x+3,得y=7,

此時拋物線過(47),代入,

得:c=7,

綜上:當c時,拋物線與直線段無公共點,

c=時,拋物線與直線段有一個公共點,

c3時,拋物線與直線段有兩個公共點,

3c7時,拋物線與直線段有一個公共點,

c7時,拋物線與直線段無公共點,

據(jù)此可得:

為整數(shù),則僅當的值為4567時,才有唯一公共點,正確;

為整數(shù),則當的值為123時,有兩個公共點,正確;

時,有兩個公共點,錯誤.

即①②③正確,

故選B.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,若二次函數(shù)圖象的對稱軸為軸交于點C,與x軸交于點給出下列結(jié)論:①二次函數(shù)的最大值為;②;③;④當時,;⑤其中正確的個數(shù)是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+c的圖象與x軸相交于AB兩點,C(m,﹣3)是圖象上的一點,且ACBC,則a的值為(

A.2B.C.3D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線ymx2+m3x3m0)與x軸交于A、B兩點(點A在點B左側(cè)),與y軸交于點C,AB4,點D為拋物線的頂點.

1)求點A和頂點D的坐標;

2)將點D向左平移4個單位長度,得到點E,求直線BE的表達式;

3)若拋物線yax26與線段DE恰有一個公共點,結(jié)合函數(shù)圖象,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)操作發(fā)現(xiàn):如圖①,小明畫了一個等腰三角形ABC,其中AB=AC,在ABC的外側(cè)分別以AB,AC為腰作了兩個等腰直角三角形ABD,ACE,分別取BDCE,BC的中點M,NG,連接GMGN.小明發(fā)現(xiàn)了:線段GMGN的數(shù)量關(guān)系是__________;位置關(guān)系是__________

(2)類比思考:

如圖②,小明在此基礎(chǔ)上進行了深入思考.把等腰三角形ABC換為一般的銳角三角形,其中ABAC,其它條件不變,小明發(fā)現(xiàn)的上述結(jié)論還成立嗎?請說明理由.

(3)深入研究:

如圖③,小明在(2)的基礎(chǔ)上,又作了進一步的探究.向ABC的內(nèi)側(cè)分別作等腰直角三角形ABD,ACE,其它條件不變,試判斷GMN的形狀,并給與證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】撫順某中學為了解八年級學生的體能狀況,從八年級學生中隨機抽取部分學生進行體能測試,測試結(jié)果分為A,BC,D四個等級.請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:

1)本次抽樣調(diào)查共抽取了多少名學生?

2)求測試結(jié)果為C等級的學生數(shù),并補全條形圖;

3)若該中學八年級共有700名學生,請你估計該中學八年級學生中體能測試結(jié)果為D等級的學生有多少名?

4)若從體能為A等級的2名男生2名女生中隨機的抽取2名學生,做為該校培養(yǎng)運動員的重點對象,請用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)以下信息,解答下列問題.

1)小華同學設(shè)乙型機器人每小時搬運xkg產(chǎn)品,可列方程為

小惠同學設(shè)甲型機器人搬運800kg所用時間為y小時,可列方程為

2)請你按照(1)中小華同學的解題思路,寫出完整的解答過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在中,邊上一點,,的外接圓,的直徑,且交于點

1)求證:的切線;

2)過點,垂足為點,延長于點,若,求的長;

3)在滿足(2)的條件下,若,求的半徑及的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠B=90°,∠D=45°,AB=BC=2,點E為四邊形ABCD內(nèi)部一點,且滿足CE2AE2=2BE2,則點E在運動過程中所形成的圖形的長為______

查看答案和解析>>

同步練習冊答案