實(shí)數(shù)a,b,c滿(mǎn)足a2+ab+ac<0,那么一元二次方程ax2+bx+c=0( )
A.有兩個(gè)不相等的實(shí)數(shù)根
B.有兩個(gè)相等的實(shí)數(shù)根
C.沒(méi)有實(shí)數(shù)根
D.條件不足,不能確定根的情況
【答案】分析:欲判斷一元二次方程ax2+bx+c=0根的情況,就要判斷△與0的關(guān)系,與a2+ab+ac<0聯(lián)立就可判斷△與0的關(guān)系,進(jìn)而判斷出方程根的情況.設(shè)法把“a2+ab+ac<0”變?yōu)楹衎2-4ac的不等式,是解決此題的關(guān)鍵.
解答:解:由題意得△=b2-4ac
∵a2+ab+ac<0
∴4a2+4ab+4ac<0
∴4a2+4ab<-4ac
∴4a2+4ab+b2<b2-4ac
∴b2-4ac>4a2+4ab+b2
∴△>(2a+b)2
∴△>0
即一元二次方程ax2+bx+c=0有兩個(gè)不相等的實(shí)數(shù)根.
故選A
點(diǎn)評(píng):判斷一元二次方程根的情況,即是判斷判別式△與0的大小關(guān)系,正確對(duì)已知條件進(jìn)行變形,是解決本題的關(guān)鍵.