已知:如圖,在四邊形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2

(1)求證:AB=BC;
(2)當(dāng)BE⊥AD于E時,試證明:BE=AE+CD.

(1)連接AC,先根據(jù)勾股定理可得,再結(jié)合,可得,從而證得結(jié)果;
(2)過C作CF⊥BE于F,即可證得四邊形CDEF是矩形,則可得CD=EF,根據(jù)同角的余角相等可得∠BAE=∠CB,即可證得△BAE≌△CBF,則可得AE=BF,從而得到結(jié)果.

解析試題分析:(1)連接AC
∵∠ABC=90°
∴AB2+BC2=AC2
∵CD⊥AD
∴AD2+CD2=AC2
∵AD2+CD2=2AB2
∴AB2+BC2=2AB2
∴AB=BC;
(2)過C作CF⊥BE于F

∵BE⊥AD
∴四邊形CDEF是矩形.
∴CD=EF
∵∠ABE+∠BAE=90°,∠ABE+∠CBF=90°
∴∠BAE=∠CB
∴△BAE≌△CBF.
∴AE=BF
∴BE=BF+EF=AE+CD.
考點(diǎn):勾股定理,矩形的判定,同角的余角相等,全等三角形的判定和性質(zhì)
點(diǎn)評:本題知識點(diǎn)較多,綜合性強(qiáng),讀懂題意及圖形,正確作出輔助線是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

39、已知:如圖,在四邊形ABCD中,AB=DC,AD=BC,點(diǎn)E在BC上,點(diǎn)F在AD上,AF=CE,EF與對角線BD相交于點(diǎn)O.求證:O是BD的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、已知,如圖,在四邊形ABCD中,AB=BC=CD=DA,∠A=∠C=72°.
請?jiān)O(shè)計(jì)兩種不同的分法,將四邊形ABCD分割成四個三角形,使得分割成的每個三角形都是等腰三角形.畫法要求如下:
(1)兩種分法只要有一條分割線段位置不同,就認(rèn)為是兩種不同的分法;
(2)畫圖工具不限,但要求畫出分割線段;
(3)標(biāo)出能夠說明不同分法所得三角形的內(nèi)角度數(shù),例如樣圖;
(4)不要求寫出畫法,不要求證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在四邊形ABCD中,AD∥BC,AC⊥BC,點(diǎn)E、F分別是邊AB、CD的中點(diǎn),AF=CE.求證:AD=BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在四邊形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2
(1)求證:AB=BC;
(2)當(dāng)BE⊥AD于E時,試證明:BE=AE+CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在四邊形ABCD中,AD=BC,M、N分別是AB、CD的中點(diǎn),AD、BC的延長線交MN于E、F.
求證:∠DEN=∠F.

查看答案和解析>>

同步練習(xí)冊答案