如果一個三角形的三邊長度之比是2:3:4,周長為36cm,則最大的邊長為
16cm
16cm
分析:根據(jù)比例設三角形的三邊分別為2k、3k、4k,然后根據(jù)周長為36列出方程求解即可.
解答:解:設三角形的三邊分別為2k、3k、4k,
根據(jù)題意得,2k+3k+4k=36,
解得k=4,
所以,最大的邊長為4×4=16cm.
故答案為:16cm.
點評:本題考查了三角形,利用“設k法”表示出三邊求解更簡便.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如果一個三角形的三邊之比是1:2:
3
,判斷此三角形的形狀是
 
三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如果一個三角形的三邊長分別為1、k、4.則化簡|2k-5|-
k2-12k+36
的結(jié)果是( 。
A、3k-11B、k+1
C、1D、11-3k

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如果一個三角形的三邊長分別為1,k,3,則化簡7-
4k2-36k+81
-|2k-3|
的結(jié)果是( 。
A、-5B、1
C、13D、19-4k

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

閱讀與解答:
古希臘的幾何學家海倫,在他的著作《度量》一書中,給出了下面一個公式:
如果一個三角形的三邊長分別為a,b,c,設p=
a+b+c
2
,則三角形的面積為S=
p(p-a)(p-b)(p-c)

請你解答:在△ABC中,BC=4,AC=5,AB=6,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

【閱讀理解】
“海倫(Heron)公式”:如果一個三角形的三邊長分別為a,b,c,設p=
a+b+c
2
,則三角形的面積為S=
p(p-a)(p-b)(p-c)

【問題解決】
(1)如圖,在△ABC中,BC=2.5,AC=6,AB=6.5.請用“海倫公式”求△ABC的面積.
(2)小怡同學認為(1)中運算太繁,并想到了一種不同的解法.你知道他想到了什么方法?請寫出來.

查看答案和解析>>

同步練習冊答案