精英家教網 > 初中數學 > 題目詳情
△ABC三邊的長分別是2cm、3cm、4cm,與其相似的△DEF的最短邊是8cm,那么它的最大邊的邊長是    cm.
【答案】分析:根據已知可求得相似比,根據相似比不難求得它的最大邊的邊長.
解答:解:△ABC三邊的長分別是2cm、3cm、4cm,那么它的最短邊是2cm,與其相似的△DEF的最短邊是8cm,那么它們的相似比是2:8,即1:4,△ABC的最大邊是4cm,則△DEF的最大邊的邊長是16cm.
點評:本題考查對相似三角形性質的理解,相似三角形對應邊的比等與相似比.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

問題背景:
在△ABC中,AB、BC、AC三邊的長分別為
5
10
、
13
,求這個三角形的面積.
小輝同學在解答這道題時,先建立一個正方形網格(每個小正方形的邊長為1),再在網格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖①所示.這樣不需求△ABC的高,而借用網格就能計算出它的面積.
(1)請你將△ABC的面積直接填寫在橫線上
 
;
思維拓展:
(2)我們把上述求△ABC面積的方法叫做構圖法.若△ABC三邊的長分別為
5
a
、2
2
a
17
a
(a>0),請利用圖②的正方形網格(每個小正方形的邊長為a)畫出相應的△ABC,并求出它的面積;
探索創(chuàng)新:
(3)若△ABC三邊的長分別為
m2+16n2
9m2+4n2
、2
m2+n2
(m>0,n>0,且m≠n),試運用構圖法求出這三角形的面積.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

12、已知△ABC三邊的長分別為7cm、9cm、10cm,那么這個三角形的三條中位線所圍成的三角形的周長為
13
cm.

查看答案和解析>>

科目:初中數學 來源: 題型:

問題:在△ABC中,AB、BC、AC三邊的長分別為
2
、
13
17
,求這個三角形的面積.
小輝同學在解答這道題時,先建立一個正方形網格(每個小正方形的邊長為1),再在網格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖所示,這樣不需求△ABC的高,而借用網格就能計算出它的面積.

(1)請你將△ABC的面積直接填寫在橫線上
5
2
5
2

(2)我們把上述求△ABC面積的方法叫做構圖法.若△ABC三邊的長分別為
2
a、2
5
a、
26
a
(a>0),請利用圖2的正方形網格(每個小正方形的邊長為a)畫出相應的△ABC,并求出它的面積是:
3a2
3a2

(3)若△ABC三邊的長分別為
4m2+n2
16m2+n2
、2
m2+n2
(m>0,n>0,m≠n),請運用構圖法在圖3指定區(qū)域內畫出示意圖,并求出△ABC的面積為:
4mn
4mn

查看答案和解析>>

科目:初中數學 來源: 題型:

問題背景:在△ABC中,AB、BC、AC三邊的長分別為
5
、
10
、
13
,求此三角形的面積.小輝同學在解答這道題時,先建立一個正方形網格(每個小正方形的邊長為1),再在網格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖①所示.這樣不需求△ABC的高,而借用網格就能計算出它的面積.
(1)請你將△ABC的面積直接填寫在橫線上:
3.5
3.5

思維拓展:
(2)我們把上述求△ABC面積的方法叫做構圖法.如果△ABC三邊的長分別
5
a、
8
a、
17
a(a>0),請利用圖②的正方形網格(每個小正方形的邊長為a)畫出相應的△ABC,并求出它的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

現場學習題
問題背景:在△ABC中,AB、BC、AC三邊的長分別為
2
、
13
、
17
,求這個三角形的面積.
小輝同學在解答這道題時,先建立一個正方形網格(每個小正方形的邊長為1),再在網格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖1所示.這樣不需求△ABC的高,而借用網格就能計算出它的面積.
(1)請你將△ABC的面積直接填寫在橫線上.
2.5
2.5

思維拓展:
(2)我們把上述求△ABC面積的方法叫做構圖法.若△ABC三邊的長分別為
2
a
、2
5
a
、
26
a
(a>0),請利用圖2的正方形網格(每個小正方形的邊長為a)畫出相應的△ABC,并求出它的面積是:
3a2
3a2

查看答案和解析>>

同步練習冊答案