拋物線l1:y=-x2+2x與x軸的交點(diǎn)為O、A,頂點(diǎn)為D,拋物線l2與拋物線l1關(guān)于y軸對(duì)稱(chēng),與x軸的交點(diǎn)為O、B,頂點(diǎn)為C,線段CD交y軸于點(diǎn)E.
(1)求拋物線l2的頂點(diǎn)C的坐標(biāo)及拋物線l2的解析式;
(2)設(shè)P是拋物線l1上與D、O兩點(diǎn)不重合的任意一點(diǎn),Q點(diǎn)是P點(diǎn)關(guān)于y軸的對(duì)稱(chēng)點(diǎn),試判斷以P、Q、C、D為頂點(diǎn)的四邊形是什么特殊的四邊形(直接寫(xiě)出結(jié)論)?
(3)在拋物線l1上是否存在點(diǎn)M,使得S△ABM=S四邊形AOED?如果存在,求出M的坐標(biāo),如果不存在,請(qǐng)說(shuō)明理由.

解:(1)∵l1:y=-x2+2x,拋物線l2與拋物線l1關(guān)于y軸對(duì)稱(chēng),
∴l(xiāng)2:y=-x2-2x=-(x+1)2+1,
∴頂點(diǎn)C的坐標(biāo)是(-1,1);
(2)

根據(jù)所畫(huà)圖形可得四邊形PQCD是矩形或等腰梯形.
(3)存在.
設(shè)滿足條件的M點(diǎn)坐標(biāo)為(x,y),
連接MA、MB、AD,以題意得A(2,0),B(-2,0),E(0,1),
S梯形AOED=(ED+OA)×OE==,
①當(dāng)y>0時(shí),S△ABM=×4×y=,
解得:y=,
將y=代入l2的解析式,可得-x2+2x=,
解得:x1=,x2=,
故M1,),M2,);
②當(dāng)y<0時(shí),S△ABM=×4×(-y)=,
解得:y=-,
將y=代入l2的解析式,可得-x2+2x=-,
解得:x1=,x2=,
故M3),M4,);
綜上可得點(diǎn)M的坐標(biāo)為M1,),M2,),M3,-),M4,-).
分析:(1)由于l1、l2關(guān)于y軸對(duì)稱(chēng),那它們的頂點(diǎn)坐標(biāo)關(guān)于y軸對(duì)稱(chēng),而開(kāi)口大小、開(kāi)口方向、與y軸的交點(diǎn)都相同,據(jù)此可求出l2的解析式;
(2)結(jié)合圖形即可得出答案.
(3)先求出四邊形AOED的面積,然后設(shè)出點(diǎn)M的坐標(biāo),根據(jù)S△ABM=S四邊形AOED,可得出關(guān)于y的方程,將y的值代入l1的解析式即可得出點(diǎn)M的坐標(biāo).
點(diǎn)評(píng):本題屬于二次函數(shù)的綜合題,涉及了拋物線的對(duì)稱(chēng)變換、三角形的面積及梯形的知識(shí),解答本題的關(guān)鍵是數(shù)形結(jié)合,根據(jù)面積關(guān)系得出方程求解,有一定難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,拋物線l1:y=-x2平移得到拋物線l2,且經(jīng)過(guò)點(diǎn)O(0,0)和點(diǎn)A(4,0),l2的頂點(diǎn)為點(diǎn)B,它的對(duì)稱(chēng)軸與l2相交于點(diǎn)C,設(shè)l1、l2與BC圍成的陰影部分面積為S,解答下列問(wèn)題:
(1)求l2表示的函數(shù)解析式及它的對(duì)稱(chēng)軸,頂點(diǎn)的坐標(biāo).
(2)求點(diǎn)C的坐標(biāo),并直接寫(xiě)出S的值.
(3)在直線AC上是否存在點(diǎn)P,使得S△POA=
1
2
S?若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【參考公式:拋物線y=ax2+bx+c 的對(duì)稱(chēng)軸是x=-
b
2a
,頂點(diǎn)坐標(biāo)是(-
b
2a
4ac-b2
4a
)】.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(-1,0),點(diǎn)B的坐標(biāo)為(3,0),二次函數(shù)y=x2的圖象記為拋物線l1
精英家教網(wǎng)
(1)平移拋物線l1,使平移后的拋物線經(jīng)過(guò)A、B兩點(diǎn),記為拋物線l2,求拋物線l2的函數(shù)表達(dá)式;
(2)設(shè)拋物線l2的頂點(diǎn)為C,請(qǐng)你判斷y軸上是否存在點(diǎn)K,使得∠BKC=90°,若存在,求出K點(diǎn)坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;
(3)拋物線l2與y軸交于點(diǎn)D,點(diǎn)P是線段BD上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P,作y軸的平行線,交拋物線l2于點(diǎn)E,求線段PE長(zhǎng)度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖(1),在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(1,-2),點(diǎn)B的坐標(biāo)為(3,-1),二次函數(shù)y=-x2的圖象為l1
精英家教網(wǎng)
(1)沿y軸向下平移拋物線l1,使平移后的拋物線過(guò)點(diǎn)A,寫(xiě)出平移后的拋物線的解析式;
(2)平移拋物線l1,使平移后的拋物線過(guò)A、B兩點(diǎn),記拋物線為l2,如圖(2),求拋物線l2的函數(shù)解析式及頂點(diǎn)C的坐標(biāo);
(3)拋物線l2上是否存在點(diǎn)Q,使△QAB為等腰三角形?若存在,請(qǐng)?jiān)趫D(2)中畫(huà)出來(lái),并簡(jiǎn)要說(shuō)明畫(huà)法;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•自貢)如圖,拋物線l交x軸于點(diǎn)A(-3,0)、B(1,0),交y軸于點(diǎn)C(0,-3).將拋物線l沿y軸翻折得拋物線l1
(1)求l1的解析式;
(2)在l1的對(duì)稱(chēng)軸上找出點(diǎn)P,使點(diǎn)P到點(diǎn)A的對(duì)稱(chēng)點(diǎn)A1及C兩點(diǎn)的距離差最大,并說(shuō)出理由;
(3)平行于x軸的一條直線交拋物線l1于E、F兩點(diǎn),若以EF為直徑的圓恰與x軸相切,求此圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線l1:y1=a(x+1)2+2與l2:y2=-(x-2)2-1交于點(diǎn)B(1,-2),且分別與y軸交于點(diǎn)D、E.過(guò)點(diǎn)B作x軸的平行線,交拋物線于點(diǎn)A、C,則以下結(jié)論:
①無(wú)論x取何值,y2總是負(fù)數(shù);
②l2可由l1向右平移3個(gè)單位,再向下平移3個(gè)單位得到;
③當(dāng)-3<x<1時(shí),隨著x的增大,y1-y2的值先增大后減。
④四邊形AECD為正方形.
其中正確的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案