如圖,已知⊙O1的半徑為1,⊙O2的半徑為2,圓心距O1O2=4.現(xiàn)把⊙O1沿直線O1O2平移,使⊙O1與⊙O2外切,則⊙O1平移的距離為( )

A.1
B.7
C.1或7
D.3或5
【答案】分析:根據(jù)⊙O1的半徑為1,大圓半徑為2,圓心距為4,針對(duì)兩圓位置關(guān)系與圓心距,兩圓半徑R,r的數(shù)量關(guān)系間的聯(lián)系,兩圓相外切,求出另一圓的半徑即可.
解答:解:依題意,∵兩圓相外切,
∴R+r=d,
∴2+1=3,
∴⊙O1平移的距離為4-3=1,
當(dāng)兩圓相交后,再平移外切,
∴⊙O1要經(jīng)過(guò)大圓,與大圓的右面相切,
∴⊙O1平移的距離為:4+2+1=7.
故選C.
點(diǎn)評(píng):此題主要考查了圓與圓的位置關(guān)系,得出相外切時(shí)兩種位置關(guān)系是解決問(wèn)題的關(guān)鍵,同時(shí)考查了學(xué)生的綜合應(yīng)用能力及推理能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系xoy中,⊙O1與x軸交于A、B兩點(diǎn),與y軸正半軸交于C點(diǎn),已知A(-1,0),O1(1,0)精英家教網(wǎng)精英家教網(wǎng)
(1)求出C點(diǎn)的坐標(biāo);
(2)過(guò)點(diǎn)C作CD∥AB交⊙O1于D,若過(guò)點(diǎn)C的直線恰好平分四邊形ABCD的面積,求出該直線的解析式;
(3)如圖,已知M(1,-2
3
),經(jīng)過(guò)A、M兩點(diǎn)有一動(dòng)圓⊙O2,過(guò)O2作O2E⊥O1M于E,若經(jīng)過(guò)點(diǎn)A有一條直線y=kx+b(k>0)交⊙O2于F,使AF=2O2E,求出k、b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知半徑為1的⊙O1與x軸交于A,B兩點(diǎn),圓心O1的坐標(biāo)為(2,0),二次函數(shù)y=-x2+bx+c的圖象經(jīng)過(guò)A,B兩點(diǎn).
(1)求二次函數(shù)的解析式;
(2)射線OM從y軸正半軸開(kāi)始,繞點(diǎn)O順時(shí)針?lè)较蛞悦棵?5°的速度旋轉(zhuǎn),幾秒后射線OM與⊙O1相切?(切點(diǎn)為M)
(3)當(dāng)射線OM與⊙O1相切時(shí),在射線OM上是否存在一點(diǎn)P,使得以P,O,A為頂點(diǎn)的三角形與△OO1M相似?若存在,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系xoy中,⊙O1與x軸交于A、B兩點(diǎn),與y軸正半軸交于C點(diǎn),已知A(-1,0),O1(1,0)
(1)求出C點(diǎn)的坐標(biāo);
(2)過(guò)點(diǎn)C作CD∥AB交⊙O1于D,若過(guò)點(diǎn)C的直線恰好平分四邊形ABCD的面積,求出該直線的解析式;
(3)如圖,已知M(1,數(shù)學(xué)公式),經(jīng)過(guò)A、M兩點(diǎn)有一動(dòng)圓⊙O2,過(guò)O2作O2E⊥O1M于E,若經(jīng)過(guò)點(diǎn)A有一條直線y=kx+b(k>0)交⊙O2于F,使AF=2O2E,求出k、b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系xoy中,⊙O1與x軸交于A、B兩點(diǎn),與y軸正半軸交于C點(diǎn),

已知A(-1,0),O1(1,0)

(1)求出C點(diǎn)的坐標(biāo)。(4分)

(2)過(guò)點(diǎn)C作CD∥AB交⊙O1于D,若過(guò)點(diǎn)C的直線恰好平分四邊形ABDC的面積,求出該直線的解析式。(4分)

(3)如圖,已知M(1,),經(jīng)過(guò)A、M兩點(diǎn)有一動(dòng)圓⊙O2,過(guò)O2作O2E⊥ O1M     于E,若經(jīng)過(guò)點(diǎn)A有一條直線y=kx+b(k>0)交⊙O2于F,使AF=2O2E,求出k、b的值。(4分)

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年湖北省武漢市漢陽(yáng)區(qū)九年級(jí)(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系xoy中,⊙O1與x軸交于A、B兩點(diǎn),與y軸正半軸交于C點(diǎn),已知A(-1,0),O1(1,0)
(1)求出C點(diǎn)的坐標(biāo);
(2)過(guò)點(diǎn)C作CD∥AB交⊙O1于D,若過(guò)點(diǎn)C的直線恰好平分四邊形ABCD的面積,求出該直線的解析式;
(3)如圖,已知M(1,),經(jīng)過(guò)A、M兩點(diǎn)有一動(dòng)圓⊙O2,過(guò)O2作O2E⊥O1M于E,若經(jīng)過(guò)點(diǎn)A有一條直線y=kx+b(k>0)交⊙O2于F,使AF=2O2E,求出k、b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案