如圖(1), 大正方體上截去一個小正方體后,可得到圖(2)的幾何體.設(shè)原大正方體的表面積為S, 圖(2)中幾何體的表面積為S¢, 那么S¢與S的大小關(guān)系是              (      )

A.S¢=S            B.S¢>S     

C.S¢<S           D.不確定

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A、B、C的坐標(biāo)分別為(-1,0),(5,0)精英家教網(wǎng),(0,2).
(1)求過A、B、C三點(diǎn)的拋物線解析式;
(2)若點(diǎn)P從A點(diǎn)出發(fā),沿x軸正方向以每秒1個單位長度的速度向B點(diǎn)移動,連接PC并延長到點(diǎn)E,使CE=PC,將線段PE繞點(diǎn)P順時針旋轉(zhuǎn)90°得到線段PF,連接FB.若點(diǎn)P運(yùn)動的時間為t秒,(0≤t≤6)設(shè)△PBF的面積為S;
①求S與t的函數(shù)關(guān)系式;
②當(dāng)t是多少時,△PBF的面積最大,最大面積是多少?
(3)點(diǎn)P在移動的過程中,△PBF能否成為直角三角形?若能,直接寫出點(diǎn)F的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,OABC是一個放在平面直角坐標(biāo)系中的矩形,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=3,OC=4,平行于對角線AC的直線m從原點(diǎn)O出發(fā),沿x軸正方向以每秒1個單位的速度運(yùn)動,設(shè)直線m與矩形OABC的兩邊分精英家教網(wǎng)別交于點(diǎn)M、N,直線運(yùn)動的時間為t(秒).
(1)寫出點(diǎn)B的坐標(biāo);
(2)t為何值時,MN=
12
AC;
(3)設(shè)△OMN的面積為S,求S與t的函數(shù)關(guān)系式,并寫出t的取值范圍;當(dāng)t為何值時,S有最大值?并求S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,以A(3,0)為圓心,以5為半徑的圓與x軸相交于B、C,與y軸的負(fù)半軸相交于D.
(1)若拋物線y=ax2+bx+c經(jīng)過B、C、D三點(diǎn),求此拋物線的解析式,并寫出拋物線與圓A的另一個交點(diǎn)E的坐標(biāo);
(2)若動直線MN(MN∥x軸)從點(diǎn)D開始,以每秒1個長度單位的速度沿y軸的正方向移動,且與線段CD、y軸分別交于M、N兩點(diǎn),動點(diǎn)P同時從點(diǎn)C出發(fā),在線段OC上以每秒2個長度單位的速度向原點(diǎn)O運(yùn)動,連接PM,設(shè)運(yùn)動時間為t秒,當(dāng)t為何值時,
MN•OPMN+OP
的值最大,并求出最大值;
(3)在(2)的條件下,若以P、C、M為頂點(diǎn)的三角形與△OCD相似,求實(shí)數(shù)t的值.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,Rt△ABC中,∠B=90°∠CAB=30°,AC⊥x軸.它的頂點(diǎn)A的坐標(biāo)為(10,0),頂點(diǎn)B的坐標(biāo)為(5,5
3
)
,點(diǎn)P從點(diǎn)A出發(fā),沿A→B→C的方向勻速運(yùn)動,同時點(diǎn)Q從點(diǎn)D(0,2)出發(fā),沿y軸正方向以相同速度運(yùn)動,當(dāng)點(diǎn)P到達(dá)點(diǎn)C時,兩點(diǎn)同時停止運(yùn)動,設(shè)運(yùn)動的時間為t秒.
(1)求∠BAO的度數(shù).(直接寫出結(jié)果)
(2)當(dāng)點(diǎn)P在AB上運(yùn)動時,△OPQ的面積S與時間t(秒)之間的函數(shù)圖象為拋物線的一部分(如圖②),求點(diǎn)P的運(yùn)動速度.
(3)求題(2)中面積S與時間
1
2
之間的函數(shù)關(guān)系式,及面積S取最大值時點(diǎn)P的坐標(biāo).
(4)如果點(diǎn)P,Q保持題(2)中的速度不變,當(dāng)t取何值時,PO=PQ,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•常熟市模擬)如圖,正方形ABCD中,點(diǎn)A、B的坐標(biāo)分別為(0,10)(8,4),點(diǎn)C在第一象限,且CE⊥x軸于E點(diǎn),動點(diǎn)P在正方形ABCD的邊上,從A出發(fā)沿A-B-C-D以每秒1個單位的速度作勻速運(yùn)動,同時點(diǎn)Q(1,0)以相同的速度在x軸上沿正方向運(yùn)動,當(dāng)P點(diǎn)到達(dá)D點(diǎn)時,兩點(diǎn)同時停止,設(shè)運(yùn)動時間為t秒.
(1)當(dāng)點(diǎn)Q運(yùn)動至(20.5,0)時,則動點(diǎn)P在
BC
BC
邊上;
(2)求正方形點(diǎn)C坐標(biāo);
(3)問是否存在t(0≤t≤10)值,使△OPQ的面積最大?若存在,求出t值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案