精英家教網 > 初中數學 > 題目詳情
(2013•天水)如圖,已知⊙O的半徑為1,銳角△ABC內接于⊙O,BD⊥AC于點D,OM⊥AB于點M,則sin∠CBD的值等于( )

A.OM的長
B.2OM的長
C.CD的長
D.2CD的長
【答案】分析:作直徑AE,連接BE.得直角三角形ABE.根據圓周角定理可證∠CBD=∠MAO,運用三角函數定義求解.
解答:解:連接AO并延長交圓于點E,連接BE.則∠C=∠E,
由AE為直徑,且BD⊥AC,得到∠BDC=∠ABE=90°,
所以△ABE和△BCD都是直角三角形,
所以∠CBD=∠EAB.
又△OAM是直角三角形,∵AO=1,
∴sin∠CBD=sin∠EAB==OM,即sin∠CBD的值等于OM的長.
故選A.
點評:考查了圓周角定理和三角函數定義.此題首先要觀察題目涉及的線段,然后根據已知條件結合定理進行角的轉換.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2013•天水)如圖所示,在△ABC中,BC=4,以點A為圓心,2為半徑的⊙A與BC相切于點D,交AB于點E,交AC于點F,且∠EAF=80°,則圖中陰影部分的面積是
4-
8
9
π
4-
8
9
π

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•天水)如圖,在四邊形ABCD中,對角線AC,BD交于點E,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=
2
,BE=2
2
.求CD的長和四邊形ABCD的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•天水)如圖所示,在天水至寶雞(天寶)高速公路建設中需要確定某條隧道AB的長度,已知在離地面2700米高度C處的飛機上,測量人員測得正前方AB兩點處的俯角分別是60°和30°,求隧道AB的長.(結果保留根號)

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•天水)如圖在平面直角坐標系xOy中,函數y=
4x
(x>0)的圖象與一次函數y=kx-k的圖象的交點為A(m,2).
(1)求一次函數的解析式;
(2)設一次函數y=kx-k的圖象與y軸交于點B,若點P是x軸上一點,且滿足△PAB的面積是4,直接寫出P點的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•天水)如圖1,已知拋物線y=ax2+bx(a≠0)經過A(3,0)、B(4,4)兩點.
(1)求拋物線的解析式;
(2)將直線OB向下平移m個單位長度后,得到的直線與拋物線只有一個公共點D,求m的值及點D的坐標;
(3)如圖2,若點N在拋物線上,且∠NBO=∠ABO,則在(2)的條件下,求出所有滿足△POD∽△NOB的點P坐標(點P、O、D分別與點N、O、B對應).

查看答案和解析>>

同步練習冊答案