【題目】問題探究

1)如圖1,△ABC和△DEC均為等腰直角三角形,∠ACB=∠DCE90°,點(diǎn)B,DE在同一直線上,連接ADBD

①請?zhí)骄?/span>ADBD之間的位置關(guān)系:________;

②若ACBCDCCE,則線段AD的長為________

拓展延伸

2)如圖2,△ABC和△DEC均為直角三角形,∠ACB=∠DCE90°,ACBC,CDCE1.將△DCE繞點(diǎn)C在平面內(nèi)順時針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角∠BCDα0°≤α360°),作直線BD,連接AD,當(dāng)點(diǎn)BD,E在同一直線上時,畫出圖形,并求線段AD的長.

【答案】1)①垂直,②4;(2)作圖見解析,

【解析】

1)①由“SAS”可證△ACD≌△BCE,可得∠ADC=BEC=45°,可得ADBD;

②過點(diǎn)CCFAD于點(diǎn)F,由勾股定理可求DF,CFAF的長,即可求AD的長;

2)分點(diǎn)DBC左側(cè)和BC右側(cè)兩種情況討論,根據(jù)勾股定理和相似三角形的性質(zhì)可求解.

解:(1)∵△ABC和△DEC均為等腰直角三角形,

AC=BC,CE=CD,∠ABC=DEC=45°=CDE

∵∠ACB=DCE=90°,

∴∠ACD=BCE,且AC=BC,CE=CD

∴△ACD≌△BCESAS

∴∠ADC=BEC=45°

∴∠ADE=ADC+CDE=90°

ADBD

故答案為:垂直

②如圖,過點(diǎn)CCFAD于點(diǎn)F,

∵∠ADC=45°,CFAD,CD=

DF=CF=1

AD=AF+DF=4

故答案為:4

2)①如圖:

∵∠ACB=∠DCE90°,ACBC,CDCE1,

AB=2,DE=2,ACD=∠BCE,

∴△ACD∽△BCE

∴∠ADC=∠E

又∵∠CDE+E=90°,

∴∠ADC+CDE =90°,即∠ADE=90°

ADBE

設(shè)BE=x,則AD=x

RtABD中,,

解得(負(fù)值舍去).

AD=

②如圖,

同①設(shè)BE=x,則AD=x

RtABD中,,即

解得(負(fù)值舍去).

AD=

綜上可得,線段AD的長為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】央視經(jīng)典詠流傳開播以來受到社會廣泛關(guān)注.我市某校就中華文化我傳承——地方戲曲進(jìn)校園的喜愛情況進(jìn)行了隨機(jī)調(diào)查,對收集的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩副尚不完整的統(tǒng)計(jì)圖.請你根據(jù)統(tǒng)計(jì)圖所提供的信息解答下列問題:

圖中A表示很喜歡”,B表示喜歡”,C表示一般”,D表示不喜歡”.

(1)被調(diào)查的總?cè)藬?shù)是_____________人,扇形統(tǒng)計(jì)圖中C部分所對應(yīng)的扇形圓心角的度數(shù)為_______.

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該校共有學(xué)生1800人,請根據(jù)上述調(diào)查結(jié)果,估計(jì)該校學(xué)生中A類有__________人;

(4)在抽取的A5人中,剛好有3個女生2個男生,從中隨機(jī)抽取兩個同學(xué)擔(dān)任兩角色,用樹形圖或列表法求出被抽到的兩個學(xué)生性別相同的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】大學(xué)畢業(yè)生小李自主創(chuàng)業(yè),開了一家小商品超市.已知超市中某商品的進(jìn)價為每件20元,售價為每件30元,每個月可賣出180件;如果每件商品的售價每上漲1元,則每個月就會少賣出10件,但每件售價必須低于34元,設(shè)每件商品的售價上漲元(為非負(fù)整數(shù)),每個月的銷售利潤為.

1)求的函數(shù)關(guān)系式,并直接寫出自變量的取值范圍;

2)利用函數(shù)關(guān)系式求出每件商品的售價為多少元時,每個月可獲得最大利潤?最大利潤是多少?

3)利用函數(shù)關(guān)系式求出每件商品的售價定為多少元時,每個月的利潤恰好是1920元?這時每件商品的利潤率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線yax+2x軸、y軸分別相交于AB兩點(diǎn),與雙曲線yx0)相交于點(diǎn)PPCx軸于點(diǎn)C,且PC4,點(diǎn)A的坐標(biāo)為(﹣4,0).

1)求雙曲線的解析式;

2)若點(diǎn)Q為雙曲線上點(diǎn)P右側(cè)的一點(diǎn),過點(diǎn)QQHx軸于點(diǎn)H,當(dāng)以點(diǎn)Q,CH為頂點(diǎn)的三角形與△AOB相似時,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AB2OBC邊的中點(diǎn),點(diǎn)E是正方形內(nèi)一動點(diǎn),OE2,連接DE,將線段DE繞點(diǎn)D逆時針旋轉(zhuǎn)90°得DF,連接AE、CF.則線段OF長的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“端午節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習(xí)俗.我市某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進(jìn)行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計(jì)圖(尚不完整).

請根據(jù)以上信息回答:

(1)本次參加抽樣調(diào)查的居民有多少人?

(2)將兩幅不完整的圖補(bǔ)充完整;

(3)若居民區(qū)有8000人,請估計(jì)愛吃D粽的人數(shù);

(4)若有外型完全相同的A、B、C、D粽各一個,煮熟后,小王吃了兩個.用列表或畫樹狀圖的方法,求他第二個吃到的恰好是C粽的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為菱形,AB=BD,點(diǎn)BC、D、G四個點(diǎn)在同一個圓⊙O上,連接BG 并延長交AD于點(diǎn)F,連接DG并延長交AB于點(diǎn)EBDCG交于點(diǎn)H,連接FH,下列結(jié) 論:①AE=DF;②FH∥AB③△DGH∽△BGE;當(dāng)CG⊙O的直徑時,DF=AF.其中正確結(jié)論的個數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yax2+bx+ca≠0)的圖象如圖所示,有下列結(jié)論:①abc0;②2a+b0;③若m為任意實(shí)數(shù),則a+bam2+bm;④ab+c0;⑤若ax12+bx1ax22+bx2,且x1≠x2,則x1+x22.其中,正確結(jié)論的個數(shù)為(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)yx2的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,點(diǎn)D的坐標(biāo)為(﹣10),二次函數(shù)yax2+bx+ca≠0)的圖象經(jīng)過A,BD三點(diǎn).

1)求二次函數(shù)的解析式;

2)如圖1,已知點(diǎn)G1,m)在拋物線上,作射線AG,點(diǎn)H為線段AB上一點(diǎn),過點(diǎn)HHEy軸于點(diǎn)E,過點(diǎn)HHFAG于點(diǎn)F,過點(diǎn)HHMy軸交AG于點(diǎn)P,交拋物線于點(diǎn)M,當(dāng)HEHF的值最大時,求HM的長;

3)在(2)的條件下,連接BM,若點(diǎn)N為拋物線上一點(diǎn),且滿足∠BMN=∠BAO,求點(diǎn)N的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案