在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC為直徑作⊙OAB于點D.

(1)求線段AD的長度;

(2)點E是線段AC上的一點,試問當點E在什么位置時,直線ED與⊙O相切?請說明理由.

 


解:(1)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90°,∴AB=5cm.  

連結(jié)CD,∵BC為直徑,∴∠ADC =∠BDC =90°.

∵∠A=∠A,∠ADC=∠ACB,∴Rt△ADC ∽Rt△ACB

,∴.                  

(2)當點E是AC的中點時,ED與⊙O相切.                    

證明:連結(jié)OD,∵DE是Rt△ADC的中線.

ED=EC,∴∠EDC=∠ECD

OC=OD,∴∠ODC =∠OCD.                                 …

∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD =∠ACB =90°.

ED與⊙O相切.                                     

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC為直徑作⊙O交AB于點D.
(1)求線段AD的長度;
(2)點E是線段AC上的一點,試問當點E在什么位置時,直線ED與⊙O相切?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•湖州)如圖,已知在Rt△ACB中,∠C=90°,AB=13,AC=12,則cosB的值為
5
13
5
13

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•青銅峽市模擬)已知:如圖①,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,點P由B出發(fā)沿BA方向向點A勻速運動,速度為1cm/s;點Q由A出發(fā)沿AC方向向點C勻速運動,速度為2cm/s;連接PQ.若設(shè)運動的時間為t(s)(0<t<2),解答下列問題:
(1)當t為何值時,PQ∥BC?
(2)設(shè)△AQP的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;
(3)如圖②,連接PC,并把△PQC沿QC翻折,得到四邊形PQP′C,那么是否存在某一時刻t,使四邊形PQP′C為菱形?若存在,求出此時t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•丹東一模)在Rt△ACB中,∠C=90°,AC=BC,一直角三角板的直角頂角O在AB邊的中點上,這塊三角板繞O點旋轉(zhuǎn),兩條直角邊始終與AC、BC邊分別相交于E、F,連接EF,則在運動過程中,△OEF與△ABC的關(guān)系是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,在Rt△ACB中,∠C=90°,AD平分∠BAC,若BC=16,BD=10,則點D到AB的距離是( 。

查看答案和解析>>

同步練習冊答案