【題目】如圖,P是拋物線y=2(x﹣2)2對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),直線x=t平行y軸,分別與y=x、拋物線交于點(diǎn)A、B.若△ABP是以點(diǎn)A或點(diǎn)B為直角頂點(diǎn)的等腰直角三角形,求滿足條件的t的值,則t= .
【答案】或1或3
【解析】
試題分析:依題意,y=2x2﹣8x+8,設(shè)A(t,t),B(t,2t2﹣8t+8),則AB=|t﹣(2t2﹣8t+8)|=|2t2﹣9t+8|,當(dāng)△ABP是以點(diǎn)A為直角頂點(diǎn)的等腰直角三角形時(shí),則∠PAB=90°,PA=AB=|t﹣2|;當(dāng)△ABP是以點(diǎn)B為直角頂點(diǎn)的等腰直角三角形時(shí),則∠PBA=90°,PB=AB=|t﹣2|;分別列方程求k的值.
試題解析:∵y=2(x﹣2)2 ∴y=2x2﹣8x+8,
∵直線x=t分別與直線y=x、拋物線y=2x2﹣8x+8交于點(diǎn)A、B兩點(diǎn),
∴設(shè)A(t,t),B(t,2t2﹣8t+8),AB=|t﹣(2t2﹣8t+8)|=|2t2﹣9t+8|,
①當(dāng)△ABP是以點(diǎn)A為直角頂點(diǎn)的等腰直角三角形時(shí),∠PAB=90°,此時(shí)PA=AB=|t﹣2|,
即|2t2﹣9t+8|=|t﹣2|, ∴2t2﹣9t+8=t﹣2,或2t2﹣9t+8=2﹣t, 解得t=或1或3;
②當(dāng)△ABP是以點(diǎn)B為直角頂點(diǎn)的等腰直角三角形時(shí),則∠PBA=90°,此時(shí)PB=AB=|t﹣2|,結(jié)果同上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,∠ABC=∠BAC=90°,在AD上取一點(diǎn)E,將△ABE沿直線BE折疊,使點(diǎn)A落在BD上的G處,EG的延長(zhǎng)線交直線BC于點(diǎn)F.
(1)試探究AE、ED、DG之間有何數(shù)量關(guān)系?說明理由;
(2)判斷△ABG與△BFE是否相似,并對(duì)結(jié)論給予證明;
(3)設(shè)AD=a,AB=b,BC=c.
①當(dāng)四邊形EFCD為平行四邊形時(shí),求a、b、c應(yīng)滿足的關(guān)系;
②在①的條件下,當(dāng)b=2時(shí),a的值是唯一的,求∠C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列選項(xiàng)中,可以用來證明命題“若a2>1,則a>1”是假命題的反例是( )
A.a=﹣2
B.a=﹣1
C.a=1
D.a=2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計(jì)算中正確的是( )
A. a2+a3=2a5 B. a4÷a=a4 C. a2·a4=a8 D. (-a2)3=-a6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,AB=AC,D、E分別是AC、AB的中點(diǎn),且BD,CE相交于O點(diǎn),某一位同學(xué)分析這個(gè)圖形后得出以下結(jié)論: ①△BCD≌△CBE; ②△BDA≌△CEA; ③△BOE≌△COD; ④△BAD≌△BCD;⑤△ACE≌△BCE,上述結(jié)論一定正確的是( )
A. ①②③ B. ②③④ C. ①③⑤ D. ①③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com