【題目】如圖,在平面直角坐標系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于第一、三象限內(nèi)的兩點,與軸交于點,過點軸于點,作軸于點,,點的坐標為

(1)求四邊形的周長和面積.

(2)求該反比例函數(shù)和一次函數(shù)的解析式.

【答案】(1) 四邊形的周長為10,面積為6(2) ;

【解析】

(1)利用三角函數(shù)求出AM的長,即可求得周長和面積;

(2)由(1)可求A的坐標,于是可求反比例解析式,然后求B坐標,求直線解析式即可得到答案;

(1)∵軸,

中,,

軸,軸,

∴四邊形是矩形,

∴四邊形的周長

四邊形的面積

(2)由(1)可知,,

∴點的坐標為

把點代入,得,

解得,

∴反比例函數(shù)的解析式為

把點代入,可得,

∴點的坐標為

、代入一次函數(shù),可得

解得

∴一次函數(shù)的解析式為

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,EF是正方形ABCD對角線AC上的兩點,且,連接BE、DE、BFDF

求證:四邊形BEDF是菱形:

的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△PAB與△PCD均為等腰直角三角形,點CPB上,若△ABC與△BCD的面積之和為10,則△PAB與△PCD的面積之差為( 。

A. 5B. 10C. l5D. 20

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A點的坐標為(a,6),ABx軸于點B,cosOAB═,反比例函數(shù)y=的圖象的一支分別交AO、AB于點C、D.延長AO交反比例函數(shù)的圖象的另一支于點E.已知點D的縱坐標為

(1)求反比例函數(shù)的解析式;

(2)求直線EB的解析式;

(3)求SOEB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩個工程隊需完成AB兩個工地的工程.若甲、乙兩個工程隊分別可提供40個和50個標準工作量,完成A、B兩個工地的工程分別需要70個和20個標準工作量,且兩個工程隊在A、B兩個工地的1個標準工作量的成本如下表所示:

A工地

B工地

甲工程隊

800

750

乙工程隊

600

570

設甲工程隊在A工地投入x20≤x≤40)個標準工作量,完成這兩個工程共需成本y元.

1)求yx之間的函數(shù)關(guān)系式;

2)請判斷y是否能等于62000,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解全區(qū)3000名九年級學生英語聽力口語自動化考試成績的情況,隨機抽取了部分學生的成績(滿分30分且得分均為整數(shù)),制成下表:

分數(shù)段(x分分)

0≤x≤18

19≤x≤21

22≤x≤24

25≤x≤27

28≤x≤30

人數(shù)

10

15

35

112

128

1)填空:

本次抽樣調(diào)查共抽取了   名學生;

學生成績的中位數(shù)所在的分數(shù)段是   ;

若用扇形統(tǒng)計圖表示統(tǒng)計結(jié)果,則分數(shù)段為0≤x≤18的人數(shù)所對應扇形的圓心角為   °;

2)如果將25分以上(含25分)定為優(yōu)秀,請估計全區(qū)九年級考生成績?yōu)閮?yōu)秀的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,數(shù)軸上有A、B兩點.

1)線段AB的中點表示的數(shù)是   ;

2)線段AB的長度是   ;

3)若A、B兩點問時向右運動,A點速度是每秒3個單位長度,B點速度是每秒2個單位長度,問經(jīng)過幾秒時AB2?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】八年級1)班學生在完成課題學習體質(zhì)健康測試中的數(shù)據(jù)分析后,利用課外活動時間積極參加體育鍛煉,每位同學從籃球、跳繩、立定跳遠、長跑、鉛球中選一項進行訓練,訓練后都進行了測試現(xiàn)將項目選擇情況及訓練后籃球定時定點投籃測試成績整理后作出如下統(tǒng)計圖

請你根據(jù)上面提供的信息回答下列問題:

1)扇形圖中跳繩部分的扇形圓心角為 度,該班共有學生 人, 訓練后籃球定時定點投籃平均每個人的進球數(shù)是

2)老師決定從選擇鉛球訓練的3名男生和1名女生中任選兩名學生先進行測試,請用列表或畫樹形圖的方法求恰好選中兩名男生的概率

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)某學校智慧方園數(shù)學社團遇到這樣一個題目:

如圖1,在ABC中,點O在線段BC上,∠BAO=30°,OAC=75°,AO=,BO:CO=1:3,求AB的長.

經(jīng)過社團成員討論發(fā)現(xiàn),過點BBDAC,交AO的延長線于點D,通過構(gòu)造ABD就可以解決問題(如圖2).

請回答:∠ADB=   °,AB=   

(2)請參考以上解決思路,解決問題:

如圖3,在四邊形ABCD中,對角線ACBD相交于點O,ACAD,AO=,ABC=ACB=75°,BO:OD=1:3,求DC的長.

查看答案和解析>>

同步練習冊答案