【題目】在如圖所示的方格紙中,每個小方格都是邊長為1個單位的正方形,圖①、圖②、圖③均為頂點都在格點上的三角形(每個小方格的頂點叫格點),
(1)在圖1中,圖①經(jīng)過一次變換(填“平移”或“旋轉(zhuǎn)”或“軸對稱”)可以得到圖②;
(2)在圖1中,圖③是可以由圖②經(jīng)過一次旋轉(zhuǎn)變換得到的,其旋轉(zhuǎn)中心是點(填“A”或 “B”或“C”);
(3)在圖2中畫出圖①繞點A順時針旋轉(zhuǎn)90°后的圖④.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校興趣小組,對函數(shù)y=|x﹣1|+1的圖像和性質(zhì)進行了研究,探究過程如下:
(1)自變量的取值范圍是全體實數(shù),與的幾組對應(yīng)值如表:
X | …… | 0 | 1 | 2 | 3 | 4 | 5 | …… | |||
y | …… | 5 | 4 | m | 2 | 1 | 2 | 3 | 4 | 5 | …… |
其中
(2)在平面直角坐標系中,畫出上表中對應(yīng)值為點的坐標,根據(jù)畫出的點,畫出該函數(shù)的圖象;
(3)根據(jù)畫出的函數(shù)圖像特征,仿照示例,完成下表中函數(shù)的變化規(guī)律:
序號 | 函數(shù)圖像特征 | 函數(shù)變化規(guī)律 |
示例1 | 在直線的右側(cè),函數(shù)圖像自左至右呈上升趨勢 | 當時y隨x的增大而增大 |
① | 在直線的右側(cè),函數(shù)圖像自左至右呈下降趨勢 | |
示例2 | 函數(shù)圖像經(jīng)過點(-3,5) | 當時 |
② | 函數(shù)圖像的最低點是 | 當時,函數(shù)有最(大或。┲担藭r |
(4)當時,的取值范圍是_____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】仔細閱讀下面解方程組的方法,然后解決有關(guān)問題:解方程組時,如果直接消元,那將會很繁瑣,若采用下面的解法,則會簡單很多.
解:①-②,得:2x+2y=2,即x+y=1③
③×16,得:16x+16y=16④
②-④,得:x=-1
將x=-1
代入③得:y=2
∴原方程組的解為:
(1)請你采用上述方法解方程組:
(2)請你采用上述方法解關(guān)于x,y的方程組,其中.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下列解答過程,然后再解題.
例:已知多項式2x3﹣x2+m有一個因式是2x+1,求m的值.
解法一:設(shè)2x3﹣x2+m=(2x+1)(x 2+ax+b),
則2x 3﹣x2+m=2x 3+(2a+1)x2+(a+2b)x+b.
比較系數(shù)得,解得,∴m=.
解法二:設(shè)2x3﹣x2+m=A(2x+1)(A為整式)
由于上式為恒等式,為方便計算了取x=﹣,2×(﹣)3﹣(﹣)2+m=0,故m=.
(1)已知多項式2x3﹣2x2+ m有一個因式是x+2,求m的值.
(2)已知x 4+ m x3+ n x﹣16有因式(x﹣1)和(x﹣2),求m、n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標軸的交點,AB為半圓的直徑,拋物線的解析式為y=x2﹣2x﹣3,求這個“果圓”被y軸截得的線段CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,直線CD切⊙O于點D,AM⊥CD于點M,連接AD,BD.
(1)求證:∠ADC=∠ABD;
(2)若AD=2 ,⊙O的半徑為3,求MD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的一條弦,C是⊙O上一動點且∠ACB=45°,E、F分別是AC、BC的中點,直線EF與⊙O交于點G、H.若⊙O的半徑為2,則GE+FH的最大值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在半徑為2的⊙O中,弦AB長為2.
(1)求點O到AB的距離.
(2)若點C為⊙O上一點(不與點A,B重合),求∠BCA的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】趙州橋的主橋拱是圓弧形,它的跨度(弧所對的弦)長為37.4m,拱高(弧的中點到弦的距離)為7.2m,請求出趙州橋的主橋拱半徑(結(jié)果保留小數(shù)點后一位).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com