【題目】如圖,直線y=mx+n交坐標(biāo)軸分別于A,B(0,1)兩點(diǎn),交雙曲線y=于點(diǎn)C(2,2),點(diǎn)D在直線AB上,AC=2CD.過(guò)點(diǎn)D作DEx軸于點(diǎn)E,交雙曲線y=于點(diǎn)F,連接CF.

(1)求反比例函數(shù)y=和直線y=mx+n的表達(dá)式;

(2)求CDF的面積.

【答案】(1)y=x+1;y= (2)2

【解析】

1)根據(jù)待定系數(shù)法即可求得;

2)作CHx軸于H,根據(jù)平行線的性質(zhì)求得DE,進(jìn)一步求得D的坐標(biāo),D的橫坐標(biāo)代入反比例函數(shù)y=,求得F點(diǎn)的坐標(biāo)從而求得DF,然后根據(jù)三角形面積公式即可求得

1∵直線y=mx+n經(jīng)過(guò)B01),C2,2)兩點(diǎn),解得,∴直線的表達(dá)式為y=;

∵點(diǎn)C2,2)在雙曲線y=,2=解得k=4,∴反比例函數(shù)的解析式為y=;

2)作CHx軸于H

C2,2),CH=2

DEx軸于點(diǎn)E,CHDE==

由直線y=x+1可知A(﹣2,0),OA=2AH=4

AC=2CD,===,DE=3,AE=6,D4,3).

x=4代入y=y=1,F4,1),DF=31=2,∴△CDF的面積=×2×42)=2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,∠1=∠2,AEOBE,BDOAD,交點(diǎn)為C,則圖中全等三角形共有( )

A. 2對(duì) B. 3對(duì) C. 4對(duì) D. 5對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明用大小相同高度為2cm10塊小長(zhǎng)方體壘了兩堵與地面垂直的木墻AD, BE,當(dāng)他將一個(gè)等腰直角三角板ABC如圖垂直放入時(shí),直角頂點(diǎn)C正好在水平線DE上,銳角頂點(diǎn)AB分別與木墻的頂端重合,求兩堵木墻之間的距離。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方形ABCD中,∠A=∠ABC=∠BCD=∠D90°,ABCD5,ADBC13,點(diǎn)E為射線AD上的一個(gè)動(dòng)點(diǎn),若ABEA'BE關(guān)于直線BE對(duì)稱(chēng),當(dāng)A'BC為直角三角形時(shí),AE的長(zhǎng)為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠BDA=CDA,則不一定能使ABD≌△ACD的條件是( 。

A. BD=DC B. AB=AC C. B=C D. BAD=CAD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】重慶市的重大惠民工程﹣﹣公租房建設(shè)已陸續(xù)竣工,計(jì)劃10年內(nèi)解決低收入人群的住房問(wèn)題,前6年,每年竣工投入使用的公租房面積y(單位:百萬(wàn)平方米),與時(shí)間x的關(guān)系是y=x+5,(x單位:年,1≤x≤6且x為整數(shù));后4年,每年竣工投入使用的公租房面積y(單位:百萬(wàn)平方米),與時(shí)間x的關(guān)系是y=-x+(x單位:年,7≤x≤10且x為整數(shù)).假設(shè)每年的公租房全部出租完.另外,隨著物價(jià)上漲等因素的影響,每年的租金也隨之上調(diào),預(yù)計(jì),第x年投入使用的公租房的租金z(單位:元/m2)與時(shí)間x(單位:年,1≤x≤10且x為整數(shù))滿足一次函數(shù)關(guān)系如下表:

z(元/m2

50

52

54

56

58

x(年)

1

2

3

4

5

(1)求出z與x的函數(shù)關(guān)系式;

(2)求政府在第幾年投入的公租房收取的租金最多,最多為多少百萬(wàn)元;

(3)若第6年竣工投入使用的公租房可解決20萬(wàn)人的住房問(wèn)題,政府計(jì)劃在第10年投入的公租房總面積不變的情況下,要讓人均住房面積比第6年人均住房面積提高a%,這樣可解決住房的人數(shù)將比第6年減少1.35a%,求a的值.

(參考數(shù)據(jù):,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】法國(guó)數(shù)學(xué)家柯西于1813年在拉格朗日、高斯的基礎(chǔ)上徹底證明了《費(fèi)馬多邊形數(shù)定理》,其主要突破在五邊形數(shù)的證明上.如圖為前幾個(gè)五邊形數(shù)的對(duì)應(yīng)圖形,請(qǐng)據(jù)此推斷,第10個(gè)五邊形數(shù)應(yīng)該為( 。,第2018個(gè)五邊形數(shù)的奇偶性為( 。

A. 145;偶數(shù) B. 145;奇數(shù) C. 176;偶數(shù) D. 176;奇數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在ABC中,BF、CF是角平分線,DEBC,分別交AB、AC于點(diǎn)D、EDE經(jīng)過(guò)點(diǎn)F.結(jié)論:①△BDFCEF都是等腰三角形;②DE=BD+CE; ③△ADE的周長(zhǎng)=AB+AC;BF=CF.其中正確的是______(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明學(xué)習(xí)電學(xué)知識(shí)后,用四個(gè)開(kāi)關(guān)按鍵(每個(gè)開(kāi)關(guān)按鍵閉合的可能性相等)、一個(gè)電源和一個(gè)燈泡設(shè)計(jì)了一個(gè)電路圖

(1)若小明設(shè)計(jì)的電路圖如圖1(四個(gè)開(kāi)關(guān)按鍵都處于打開(kāi)狀態(tài))如圖所示,求任意閉合一個(gè)開(kāi)關(guān)按鍵,燈泡能發(fā)光的概率;

(2)若小明設(shè)計(jì)的電路圖如圖2(四個(gè)開(kāi)關(guān)按鍵都處于打開(kāi)狀態(tài))如圖所示,求同時(shí)時(shí)閉合其中的兩個(gè)開(kāi)關(guān)按鍵,燈泡能發(fā)光的概率.(用列表或樹(shù)狀圖法)

查看答案和解析>>

同步練習(xí)冊(cè)答案