【題目】如圖,釣魚竿AC長6m,露在水面上的魚線BC長3m,某釣者想看看魚釣上的情況,把魚竿AC轉動到AC′的位置,此時露在水面上的魚線B′C′為3m,則魚竿轉過的角度是__________.
【答案】15°
【解析】分析:根據圖示可得:在Rt△ABC中,由勾股定理可得:,可得AB=BC,所以∠CAB=45°, Rt△AB’C’中,由勾股定理可得:,可得AB’=AC’,根據在直角三角形中,30°角所對直角邊等于斜邊的一半可得, ∠AC’B’=30°,繼而可得∠C’AB‘=60°,即∠C’AC=15°.
詳解: 在Rt△ABC中,由勾股定理可得:
,
所以AB=BC,
所以∠CAB=45°,
在Rt△AB’C’中,由勾股定理可得:,
所以AB’=AC’,
根據在直角三角形中,30°角所對直角邊等于斜邊的一半可得, ∠AC’B’=30°,
所以∠C’AB‘=60°,
∠C’AC=60°-45°=15°,故答案為:15°.
科目:初中數學 來源: 題型:
【題目】一個自然數的立方,可以分裂成若干個連續(xù)奇數的和,例如:23,33和43分別可以按如圖所示的方式“分裂”,則63“分裂”出的奇數中,最大的奇數是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校要將一塊長為a米,寬為b米的長方形空地設計成花園,現有如下兩種方案供選擇.
方案一:如圖1,在空地上橫、豎各鋪一條寬為4米的石子路,其余空地種植花草.
方案二:如圖2,在長方形空地中留一個四分之一圓和一個半圓區(qū)域種植花草,其余空地鋪筑成石子路.
(1) 分別表示這兩種方案中石子路(圖中陰影部分)的面積(若結果中含有π,則保留)
(2) 若a=30,b=20,該校希望多種植物美化校園,請通過計算選擇其中一種方案(π取3.14).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是二次函數y=ax2+bx+c圖象的一部分,圖象過點A(﹣3,0),對稱軸為x=﹣1.給出四個結論:①b2>4ac;②2a+b=0;③a﹣b+c=0;④5a<b.其中正確結論是( )
A.②④
B.①④
C.②③
D.①③
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC是一張紙片,∠C=90°,AC=6,BC=8,現將其折疊.使點B與點A重合,折痕為DE,則DE的長為( )
A. 1.75 B. 3 C. 3.75 D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一輛出租車從A地出發(fā),在一條東西走向的街道上往返,每次行駛的情況(記向東為正)記錄如下(x>5且x<14,單位:m):
行駛次數 | 第一次 | 第二次 | 第三次 | 第四次 |
行駛情況 | x | ﹣x | x﹣3 | 2(5﹣x) |
行駛方向(填“東”或“西”) |
|
|
|
|
(1)請將表格補充完整;
(2)求經過連續(xù)4次行駛后,這輛出租車所在的位置;
(3)若出租車行駛的總路程為41m,求第一次行駛的路程x的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明參加某網店的“翻牌抽獎”活動,如圖,4張牌分別對應價值5,10,15,20(單位:元)的4件獎品.
(1)如果隨機翻1張牌,那么抽中20元獎品的概率為 .
(2)如果隨機翻2張牌,且第一次翻過的牌不再參加下次翻牌,請用列表或畫樹狀圖的方法求出所獲獎品總值不低于30元的概率為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】雞兔同籠問題是我國古代著名趣題之一,大約在 1500 年前,《孫子算經》中就記載了這個有趣的問題.書中是這樣敘述的:“今有雉兔同籠,上有三十五頭,下有九十四足,問雉兔各幾何?”這四句話的意思是:有若干只雞、兔同在一個籠子里,從上上面數,有 35 個頭;從下面數,有 94 只腳 .求籠中各有幾只雞和兔?經計算可得( )
A. 雞 20 只,兔 15 只 B. 雞 12 只,兔 23 只
C. 雞 15 只,兔 20 只 D. 雞 23 只,兔 12 只
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等腰三角形ABC的底邊AB在x軸上,點B與原點O重合,已知點A(﹣2,0),AC= ,將△ABC沿x軸向右平移,當點C的對應點C1落在直線y=2x﹣4上時,則平移的距離是( )
A.2
B.3
C.4
D.5
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com