如圖,AB是⊙O的直徑,CD是⊙O的切線,切點為C,BE⊥CD,垂足為E.連接AC、BC.
(Ⅰ)求證:BC平分∠ABE;
(Ⅱ)若∠A=60°,OA=2,求CE的長.

證明:(Ⅰ)∵CD是⊙O切線,
∴OC⊥CD,
∴∠OCB+∠BCE=90°,
∵BE⊥CD,
∴∠CBE+∠BCE=90°,
∴∠OCB=∠CBE,
又∵OC=OB,
∴∠OCB=∠OBC,
∴∠CBE=∠OBC,即BC平分∠ABE;

(Ⅱ)∵AB是⊙O的直徑,
∴∠ACB=90°,
在Rt△ABC中,BC=AB•sinA=2×2×sin60°=
在Rt△BCE中,∵∠CBE=∠ABC=90°-∠A=30°,
∴CE=BC=
分析:(1)利用切線的性質(zhì)首先得出∠OCB=∠CBE,進而得出∠CBE=∠OBC即可求出BC平分∠ABE;
(2)首先利用銳角三角函數(shù)關系得出BC=AB•sinA=2×2×sin60°=,進而求出∠CBE=∠ABC=90°-∠A=30°,即可求出CE的長.
點評:此題主要考查了切線的性質(zhì)以及銳角三角函數(shù),根據(jù)切線的性質(zhì)得出∠OCB=∠CBE是解題關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

8、如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當陽光與水平線成60°角時,電線桿的影子BC的長度為4米,則電線桿AB的高度為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

小亮家窗戶上的遮雨罩是一種玻璃鋼制品,它的頂部是圓柱側(cè)面的一部分(如圖1),它的側(cè)面邊緣上有兩條圓。ㄈ鐖D2),其中頂部圓弧AB的圓心O1在豎直邊緣AD上,另一條圓弧BC的圓心O2在水平邊緣DC的延長線上,其圓心角為90°,請你根據(jù)所標示的尺寸(單位:cm)解決下面的問題.(玻璃鋼材料的厚度忽略不計,π取3.1416)
(1)計算出弧AB所對的圓心角的度數(shù)(精確到0.01度)及弧AB的長度;(精確到0.1cm)
(2)計算出遮雨罩一個側(cè)面的面積;(精確到1cm2
(3)制做這個遮雨罩大約需要多少平方米的玻璃鋼材料.(精確到精英家教網(wǎng)0.1平方米)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示是永州八景之一的愚溪橋,橋身橫跨愚溪,面臨瀟水,橋下冬暖夏涼,常有漁船停泊橋下避曬納涼.已知主橋拱為拋物線型,在正常水位下測得主拱寬24m,最高點離水面8m,以水平線AB為x軸,AB的中點為原點建立坐標系.
①求此橋拱線所在拋物線的解析式.
②橋邊有一浮在水面部分高4m,最寬處16m的河魚餐船,如果從安全方面考慮,要求通過愚溪橋的船只,其船身在鉛直方向上距橋內(nèi)壁的距離不少于0.5m.探索此船能否通過愚溪橋?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:初中數(shù)學解題思路與方法 題型:047

已知如圖,AB是半圓直經(jīng),△ACD內(nèi)接于半⊙O,CE⊥AB于E,延長AD交EC的延長線于F,求證:AC·CD=AD·FC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當陽光與水平線成60°角時,電線桿的影子BC的長度為4米,則電線桿AB的高度為


  1. A.
    4米
  2. B.
    6米
  3. C.
    8米
  4. D.
    10米

查看答案和解析>>

同步練習冊答案