精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知直線PA交O于A、B兩點,AE是O的直徑,點C為O上一點,且AC平分PAE,過C作CDPA,垂足為D.

(1)求證:CD為O的切線;

(2)若DC+DA=6,⊙O的直徑為10,求AB的長度.

【答案】(1)證明見解析(2)6

【解析】分析:1)連接OC,根據題意可證得∠CAD+DCA=90°,再根據角平分線的性質,得∠DCO=90°,則CD O的切線;

2)過OOFAB,則∠OCD=CDA=OFD=90°,得四邊形OCDF為矩形,設AD=x,在RtAOF中,由勾股定理得(5-x +6-x =25,從而求得x的值,由勾股定理得出AB的長.

本題解析

(1)證明:連接OC,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠PAE,

∴∠DAC=∠CAO,∴∠DAC=∠OCA,∴PB∥OC,∵CD⊥PA,

∴CD⊥OC,CO為O半徑,∴CD為O的切線;

(2)過O作OF⊥AB,垂足為F,∴∠OCD=∠CDA=∠OFD=90,∴四邊形DCOF為矩形,∴OC=FD,OF=CD.∵DC+DA=6,設AD=x,則OF=CD=6x,∵O的直徑為10,∴DF=OC=5,∴AF=5x,

在Rt△AOF中,由勾股定理得AF +OF=OA.

即(5x) +(6x) =25,化簡得x11x+18=0,

解得 .

∵CD=6x大于0,故x=9舍去,∴x=2,從而AD=2,AF=52=3,

∵OF⊥AB,由垂徑定理知,F為AB的中點,∴AB=2AF=6.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】菱形ABCD在平面直角坐標系中的位置如圖所示,對角線AC與BD的交點E恰好在y軸上,過點D和BC的中點H的直線交AC于點F,線段DE,CD的長是方程x2﹣9x+18=0的兩根,請解答下列問題:

(1)求點D的坐標;

(2)若反比例函數y=(k≠0)的圖象經過點H,則k=   ;

(3)點Q在直線BD上,在直線DH上是否存在點P,使以點F,C,P,Q為頂點的四邊形是平行四邊形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校為獎勵該校在南山區(qū)第二屆學生技能大賽中表現突出的20名同學,派李老師為這些同學購買獎品,要求每人一件,李老師到文具店看了商品后,決定獎品在鋼筆和筆記本中選擇.如果買4個筆記本和2支鋼筆,則需86元;如果買3個筆記本和1支鋼筆,則需57元.

1)求筆記本和鋼筆的單價分別為多少元?

2)售貨員提示,購買筆記本沒有優(yōu)惠:買鋼筆有優(yōu)惠,具體方法是:如果買鋼筆超過10支,那么超出部分可以享受8折優(yōu)惠,若買xx10)支鋼筆,所需費用為y元,請你求出yx之間的函數關系式;

3)在(2)的條件下,如果買同一種獎品,請你幫忙計算說明,買哪種獎品費用更低.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,已知點A、B的坐標分別為(-,0)、(0-1),把點A繞坐標原點O順時針旋轉135°得點C,若點C在反比例函數y=的圖象上.

1)求反比例函數的表達式;

2)若點Dy軸上,點E在反比例函數y=的圖象上,且以點AB、DE為頂點的四邊形是平行四邊形.請畫出滿足題意的示意圖并在示意圖的下方直接寫出相應的點D、E的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數y=ax2+bx+ca≠0)的部分圖象如圖所示,圖象過點(-1,0),對稱軸為直線 x=2,系列結論:(1)4a+b=0;(2)4a+c>2b;(3)5a+3c>0;(4)方程ax﹣1)2 + bx﹣1)+c=0的兩根是x1= 0,x2= 6.其中正確的結論有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知一元二次方程x2﹣4x+k=0有兩個不相等的實數根

(1)求k的取值范圍;

(2)如果k是符合條件的最大整數,且一元二次方程x2﹣4x+k=0x2+mx﹣1=0有一個相同的根,求此時m的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如果關于x的一元二次方程有兩個實數根,且其中一個根為另一個根的2,那么稱這樣的方程為倍根方程”.例如,一元二次方程的兩個根是24,則方程就是倍根方程”.

(1)若一元二次方程倍根方程”,c ;

(2)倍根方程”,求代數式的值;

(3)若方程是倍根方程,且不同的兩點M(k+1,5),N(3-k,5)都在拋物線上,求一元二次方程的根.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點O為等邊三角形ABC內一點,連接OA,OB,OC,將線段BO繞點B順時針旋轉60°到BM,連接CM,OM

1)求證:AOCM;

2)若OA8,OC6OB10,判斷△OMC的形狀并證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點E在正方形ABCD的對角線AC上,且EC=2AE,直角三角形FEG的兩直角邊EF、EG分別交BC、DC于點M、N.若正方形ABCD的邊長為a,則重疊部分四邊形EMCN的面積為( 。

A. a2 B. a2 C. a2 D. a2

查看答案和解析>>

同步練習冊答案