【題目】如圖,已知直線PA交⊙O于A、B兩點,AE是⊙O的直徑,點C為⊙O上一點,且AC平分∠PAE,過C作CD⊥PA,垂足為D.
(1)求證:CD為⊙O的切線;
(2)若DC+DA=6,⊙O的直徑為10,求AB的長度.
【答案】(1)證明見解析(2)6
【解析】分析:(1)連接OC,根據題意可證得∠CAD+∠DCA=90°,再根據角平分線的性質,得∠DCO=90°,則CD為 O的切線;
(2)過O作OF⊥AB,則∠OCD=∠CDA=∠OFD=90°,得四邊形OCDF為矩形,設AD=x,在Rt△AOF中,由勾股定理得(5-x) +(6-x) =25,從而求得x的值,由勾股定理得出AB的長.
本題解析
(1)證明:連接OC,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠PAE,
∴∠DAC=∠CAO,∴∠DAC=∠OCA,∴PB∥OC,∵CD⊥PA,
∴CD⊥OC,CO為O半徑,∴CD為O的切線;
(2)過O作OF⊥AB,垂足為F,∴∠OCD=∠CDA=∠OFD=90,∴四邊形DCOF為矩形,∴OC=FD,OF=CD.∵DC+DA=6,設AD=x,則OF=CD=6x,∵O的直徑為10,∴DF=OC=5,∴AF=5x,
在Rt△AOF中,由勾股定理得AF +OF=OA.
即(5x) +(6x) =25,化簡得x11x+18=0,
解得 .
∵CD=6x大于0,故x=9舍去,∴x=2,從而AD=2,AF=52=3,
∵OF⊥AB,由垂徑定理知,F為AB的中點,∴AB=2AF=6.
科目:初中數學 來源: 題型:
【題目】菱形ABCD在平面直角坐標系中的位置如圖所示,對角線AC與BD的交點E恰好在y軸上,過點D和BC的中點H的直線交AC于點F,線段DE,CD的長是方程x2﹣9x+18=0的兩根,請解答下列問題:
(1)求點D的坐標;
(2)若反比例函數y=(k≠0)的圖象經過點H,則k= ;
(3)點Q在直線BD上,在直線DH上是否存在點P,使以點F,C,P,Q為頂點的四邊形是平行四邊形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為獎勵該校在南山區(qū)第二屆學生技能大賽中表現突出的20名同學,派李老師為這些同學購買獎品,要求每人一件,李老師到文具店看了商品后,決定獎品在鋼筆和筆記本中選擇.如果買4個筆記本和2支鋼筆,則需86元;如果買3個筆記本和1支鋼筆,則需57元.
(1)求筆記本和鋼筆的單價分別為多少元?
(2)售貨員提示,購買筆記本沒有優(yōu)惠:買鋼筆有優(yōu)惠,具體方法是:如果買鋼筆超過10支,那么超出部分可以享受8折優(yōu)惠,若買x(x>10)支鋼筆,所需費用為y元,請你求出y與x之間的函數關系式;
(3)在(2)的條件下,如果買同一種獎品,請你幫忙計算說明,買哪種獎品費用更低.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,已知點A、B的坐標分別為(-,0)、(0,-1),把點A繞坐標原點O順時針旋轉135°得點C,若點C在反比例函數y=的圖象上.
(1)求反比例函數的表達式;
(2)若點D在y軸上,點E在反比例函數y=的圖象上,且以點A、B、D、E為頂點的四邊形是平行四邊形.請畫出滿足題意的示意圖并在示意圖的下方直接寫出相應的點D、E的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(-1,0),對稱軸為直線 x=2,系列結論:(1)4a+b=0;(2)4a+c>2b;(3)5a+3c>0;(4)方程a(x﹣1)2 + b(x﹣1)+c=0的兩根是x1= 0,x2= 6.其中正確的結論有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知一元二次方程x2﹣4x+k=0有兩個不相等的實數根
(1)求k的取值范圍;
(2)如果k是符合條件的最大整數,且一元二次方程x2﹣4x+k=0與x2+mx﹣1=0有一個相同的根,求此時m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如果關于x的一元二次方程有兩個實數根,且其中一個根為另一個根的2倍,那么稱這樣的方程為“倍根方程”.例如,一元二次方程的兩個根是2和4,則方程就是“倍根方程”.
(1)若一元二次方程是“倍根方程”,則c ;
(2)若是“倍根方程”,求代數式的值;
(3)若方程是倍根方程,且不同的兩點M(k+1,5),N(3-k,5)都在拋物線上,求一元二次方程的根.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點O為等邊三角形ABC內一點,連接OA,OB,OC,將線段BO繞點B順時針旋轉60°到BM,連接CM,OM.
(1)求證:AO=CM;
(2)若OA=8,OC=6,OB=10,判斷△OMC的形狀并證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點E在正方形ABCD的對角線AC上,且EC=2AE,直角三角形FEG的兩直角邊EF、EG分別交BC、DC于點M、N.若正方形ABCD的邊長為a,則重疊部分四邊形EMCN的面積為( 。
A. a2 B. a2 C. a2 D. a2
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com