【題目】在半徑等于5 cm的圓內(nèi)有長為cm的弦,則此弦所對的圓周角為

A.60°B.120°C.60°或120°D.30°或120°

【答案】C

【解析】

根據(jù)題意畫出相應(yīng)的圖形,由ODAB,利用垂徑定理得到DAB的中點,由AB的長求出ADBD的長,且得出OD為角平分線,在RtAOD中,利用銳角三角函數(shù)定義及特殊角的三角函數(shù)值求出∠AOD的度數(shù),進而確定出∠AOB的度數(shù),利用同弧所對的圓心角等于所對圓周角的2倍,即可求出弦AB所對圓周角的度數(shù).

如圖所示,

ODAB,

DAB的中點,即AD=BD=,

RtAOD中,OA=5,AD=

sinAOD=,

又∵∠AOD為銳角,

∴∠AOD=60°,

∴∠AOB=120°,

∴∠ACB=AOB=60°,

又∵圓內(nèi)接四邊形AEBC對角互補,

∴∠AEB=120°,

則此弦所對的圓周角為60°120°

故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB、CD是⊙O的兩條互相垂直的直徑,E上一點,連接AE,作OGAECE于點G

1)求證:BEEG;

2)判斷AECG的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,∠AOB90°,∠OAB30°,反比例函數(shù)y1的圖象經(jīng)過點A,反比例函數(shù)y2的圖象經(jīng)過點B,則下列關(guān)于m,n的關(guān)系正確的是( 。

A.mnB.m=﹣nC.m=﹣nD.m=﹣3n

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過原點的直線與反比例函數(shù)k>0)的圖象交于A,B兩點,點A在第一象限點Cx軸正半軸上,連結(jié)AC交反比例函數(shù)圖象于點D.AE為∠BAC的平分線,過點BAE的垂線,垂足為E,連結(jié)DE.若AC=3DC,△ADE的面積為8,則k的值為____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,ADBC,點E是邊AD的中點,連接BE并延長交CD的延長線于點F,交AC于點G.

(1)FD2, ,求線段DC的長;

(2)求證:EF·GBBF·GE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB90°,∠ABC30°,BC2.將△ABC繞點C逆時針旋轉(zhuǎn)某個角度后得到△ABC,當點A的對應(yīng)點A′落在AB邊上時,陰影部分的面積為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD是正方形,E、F分別是DC和CB的延長線上的點,且DE=BF,連接AE、AF、EF.

(1)求證:ADE≌△ABF;

(2)填空:ABF可以由ADE繞旋轉(zhuǎn)中心    點,按順時針方向旋轉(zhuǎn)    度得到;

(3)若BC=8,DE=6,求AEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,∠DAC的平分線交DC于點E,若點P,Q分別是AD和AE上的動點,則DQ+PQ的最小值是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線yax2+bx+5x軸交于A(﹣1,0),B5,0)兩點(點A在點B的左側(cè)),與y軸交于點C

1)求拋物線的解析式;

2)點D是第一象限內(nèi)拋物線上的一個動點(與點C,B不重合),過點DDFx軸于點F,交直線BC于點E,連接BD,直線BC能否把△BDF分成面積之比為23的兩部分?若能,請求出點D的坐標;若不能,請說明理由.

3)若M為拋物線對稱軸上一動點,使得△MBC為直角三角形,請直接寫出點M的坐標.

查看答案和解析>>

同步練習(xí)冊答案