【題目】將一副三角板Rt△ABD與Rt△ACB(其中∠ABD=90°,∠D=60°,∠ACB=90°,∠ABC=45°)如圖擺放,Rt△ABD中∠D所對直角邊與Rt△ACB斜邊恰好重合.以AB為直徑的圓經(jīng)過點C,且與AD交于點 E,分別連接EB,EC.
(1)求證:EC平分∠AEB;
(2)求 的值.
【答案】
(1)證明:∵Rt△ACB中,∠ACB=90°,∠ABC=45°,
∴∠BAC=∠ABC=45°,
∵∠AEC=∠ABC,∠BEC=∠BAC,
∴∠AEC=∠BEC,
即EC平分∠AEB
(2)解:如圖,設(shè)AB與CE交于點M.
∵EC平分∠AEB,
∴ = .
在Rt△ABD中,∠ABD=90°,∠D=60°,
∴∠BAD=30°,
∵以AB為直徑的圓經(jīng)過點E,
∴∠AEB=90°,
∴tan∠BAE= = ,
∴AE= BE,
∴ = = .
作AF⊥CE于F,BG⊥CE于G.
在△AFM與△BGM中,
∵∠AFM=∠BGM=90°,∠AMF=∠BMG,
∴△AFM∽△BGM,
∴ = = ,
∴ = = = .
【解析】(1)由Rt△ACB中∠ABC=45°,得出∠BAC=∠ABC=45°,根據(jù)圓周角定理得出∠AEC=∠ABC,∠BEC=∠BAC,等量代換得出∠AEC=∠BEC,即EC平分∠AEB;(2)設(shè)AB與CE交于點M.根據(jù)角平分線的性質(zhì)得出 = .易求∠BAD=30°,由直徑所對的圓周角是直角得出∠AEB=90°,解直角△ABE得到AE= BE,那么 = = .作AF⊥CE于F,BG⊥CE于G.證明△AFM∽△BGM,根據(jù)相似三角形對應(yīng)邊成比例得出 = = ,進而求出 = = = .
【考點精析】本題主要考查了圓周角定理和相似三角形的判定與性質(zhì)的相關(guān)知識點,需要掌握頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半;相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】為了了解某校九年級學生的跳高水平,隨機抽取該年級50名學生進行跳高測試,并把測試成績繪制成如圖所示的頻數(shù)表和未完成的頻數(shù)直方圖(每組含前一個邊界值,不含后一個邊界值).
某校九年級50名學生跳高測試成績的頻數(shù)表
組別(m) | 頻數(shù) |
1.09~1.19 | 8 |
1.19~1.29 | 12 |
1.29~1.39 | A |
1.39~1.49 | 10 |
(1)求A的值,并把頻數(shù)直方圖補充完整;
(2)該年級共有500名學生,估計該年級學生跳高成績在1.29m(含1.29m)以上的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一次函數(shù)y=kx+b(k≠0)的圖象經(jīng)過A(﹣1,﹣4),B(2,2)兩點,P為反比例函數(shù)y= 圖象上一動點,O為坐標原點,過點P作y軸的垂線,垂足為C,則△PCO的面積為( )
A.2
B.4
C.8
D.不確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是半圓直徑,半徑OC⊥AB于點O,D為半圓上一點,AC∥OD,AD與OC交于點E,連結(jié)CD、BD,給出以下三個結(jié)論:①OD平分∠COB;②BD=CD;③CD2=CECO,其中正確結(jié)論的序號是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算題
(1)計算:6cos45°+( )﹣1+( ﹣1.73)0+|5﹣3 |+42017×(﹣0.25)2017
(2)先化簡,再求值:( ﹣a+1)÷ + ﹣a,并從﹣1,0,2中選一個合適的數(shù)作為a的值代入求值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中BC=2,AB=2 ,AC=b,且關(guān)于x的方程x2﹣4x+b=0有兩個相等的實數(shù)根,則AC邊上的中線長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某太陽能熱水器的橫截面示意圖如圖所示,已知真空熱水管AB與支架CD所在直線相交于點O,且OB=OD,支架CD與水平線AE垂直,∠BAC=∠CDE=30°,DE=80cm,AC=165cm.
(1)求支架CD的長;
(2)求真空熱水管AB的長.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某課桌生產(chǎn)廠家研究發(fā)現(xiàn),傾斜12°﹣24°的桌面有利于學生保持軀體自然姿勢.根據(jù)這一研究,廠家決定將水平桌面做成可調(diào)節(jié)角度的桌面.新桌面的設(shè)計圖如圖1所示,AB可繞點A旋轉(zhuǎn),在點C處安裝一根可旋轉(zhuǎn)的支撐臂CD,AC=30cm.
(1)如圖2,當∠BAC=24°時,CD⊥AB,求支撐臂CD的長.
(2)如圖3,當∠BAC=12°,求AD的長(結(jié)果保留根號).
[參考數(shù)據(jù):sin24°=0.40,cos24°=0.91,tan24°=0.46,sin12°=0.20]
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y= x2經(jīng)過平移得到拋物線y=ax2+bx,其對稱軸與兩段拋物線所圍成的陰影部分的面積為 ,則a、b的值分別為( )
A. ,
B. ,﹣
C. ,﹣
D.﹣ ,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com