【題目】如圖,點(diǎn)O△ABC內(nèi)一點(diǎn),連結(jié)OB、OC,并將AB、OB、OCAC的中點(diǎn)D、EF、G依次連結(jié),得到四邊形DEFG

1)求證:四邊形DEFG是平行四邊形;

2)若MEF的中點(diǎn),OM=3∠OBC∠OCB互余,求DG的長(zhǎng)度.

【答案】1)證明見(jiàn)解析;(26

【解析】試題分析:(1)根據(jù)三角形的中位線(xiàn)平行于第三邊并且等于第三邊的一半可得EF∥BCEF=BC,DG∥BCDG=BC,從而得到DE=EF,DG∥EF,再利用一組對(duì)邊平行且相等的四邊形是平行四邊形證明即可;

2)先判斷出∠BOC=90°,再利用直角三角形斜邊的中線(xiàn)等于斜邊的一半,求出EF即可.

試題解析:(1∵DG分別是AB、AC的中點(diǎn),∴DG∥BC,DG=BC,∵E、F分別是OB、OC的中點(diǎn),∴EF∥BC,EF=BC∴DE=EF,DG∥EF,四邊形DEFG是平行四邊形;

2∵∠OBC∠OCB互余,∴∠OBC+∠OCB=90°,∴∠BOC=90°,∵M(jìn)EF的中點(diǎn),OM=3,∴EF=2OM=6

由(1)有四邊形DEFG是平行四邊形,∴DG=EF=6

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電腦經(jīng)銷(xiāo)商計(jì)劃同時(shí)購(gòu)進(jìn)一批電腦機(jī)箱和液晶顯示器,若購(gòu)進(jìn)電腦機(jī)箱10臺(tái),和液晶顯示器8臺(tái),共需要資金7000元,若購(gòu)進(jìn)電腦機(jī)箱兩臺(tái)和液晶顯示器5臺(tái),共需要資金4120元.
(1)每臺(tái)電腦機(jī)箱、液晶顯示器的進(jìn)價(jià)各是多少元?
(2)該經(jīng)銷(xiāo)商計(jì)劃購(gòu)進(jìn)這兩種商品共50臺(tái),而可用于購(gòu)買(mǎi)這兩種商品的資金不超過(guò)22240元,根據(jù)市場(chǎng)行情,銷(xiāo)售電腦機(jī)箱,液晶顯示器一臺(tái)分別可獲得10元和160元,改經(jīng)銷(xiāo)商希望銷(xiāo)售完這兩種商品,所獲得利潤(rùn)不少于4100元,試問(wèn):該經(jīng)銷(xiāo)商有幾種進(jìn)貨方案?哪種方案獲利最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠A=90°,AB=AC,BC=20,DEABC的中位線(xiàn),點(diǎn)M是邊BC上一點(diǎn),BM=3,點(diǎn)N是線(xiàn)段MC上的一個(gè)動(dòng)點(diǎn),連接DN,ME,DNME相交于點(diǎn)O.若OMN是直角三角形,則DO的長(zhǎng)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC是等腰直角三角形,∠A=90°,D是腰AC上的一個(gè)動(dòng)點(diǎn),過(guò)C作CE垂直于BD或BD的延長(zhǎng)線(xiàn),垂足為E,如圖.
(1)若BD是AC的中線(xiàn),求 的值;
(2)若BD是∠ABC的角平分線(xiàn),求 的值;
(3)結(jié)合(1)、(2),試推斷 的取值范圍(直接寫(xiě)出結(jié)論,不必證明),并探究 的值能小于 嗎?若能,求出滿(mǎn)足條件的D點(diǎn)的位置;若不能,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,若AB是⊙0的直徑,CD是⊙O的弦,∠ABD=58°,則∠BCD=(
A.116°
B.32°
C.58°
D.64°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了鼓勵(lì)市民節(jié)約用水,某市居民生活用水按階梯式水價(jià)計(jì)費(fèi).如表是該市居民一戶(hù)一表生活用水及提示計(jì)費(fèi)價(jià)格表的部分信息:(說(shuō)明:①每戶(hù)產(chǎn)生的污水量等于該戶(hù)自來(lái)水用水量;②水費(fèi)=自來(lái)水費(fèi)用+污水處理費(fèi)用)

已知小王家20124月份用水20噸,交水費(fèi)66元;5月份用水25噸,交水費(fèi)91元.

(1)求a、b的值;

(2)隨著夏天的到來(lái),用水量將增加.為了節(jié)省開(kāi)支,小王計(jì)劃把6月份的水費(fèi)控制在不超過(guò)家庭月收入的2%.若小王家的月收入為9200元,則小王家6月份最多能用水多少?lài)崳?/span>

自來(lái)水銷(xiāo)售價(jià)格

污水處理價(jià)格

每戶(hù)每月用水量

單價(jià):元/

單價(jià):元/

17噸以下

a

0.80

超過(guò)17噸但不超過(guò)30噸部分

b

0.80

超過(guò)30噸的部分

6.00

0.80

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市今年的信息技術(shù)結(jié)業(yè)考試,采用學(xué)生抽簽的方式?jīng)Q定自己的考試內(nèi)容.規(guī)定:每位考生先在三個(gè)筆試題(題簽分別用代碼B1、B2、B3表示)中抽取一個(gè),再在三個(gè)上機(jī)題(題簽分別用代碼J1、J2、J3表示)中抽取一個(gè)進(jìn)行考試.小亮在看不到題簽的情況下,分別從筆試題和上機(jī)題中隨機(jī)地各抽取一個(gè)題簽.
(1)用樹(shù)狀圖或列表法表示出所有可能的結(jié)果;
(2)求小亮抽到的筆試題和上機(jī)題的題簽代碼的下標(biāo)(例如“B1”的下表為“1”)均為奇數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,以矩形ABCD的對(duì)角線(xiàn)AC的中點(diǎn)O為圓心,OA長(zhǎng)為半徑作⊙O,⊙O經(jīng)過(guò)B、D兩點(diǎn),過(guò)點(diǎn)B作BK⊥AC,垂足為K.過(guò)D作DH∥KB,DH分別與AC、AB、⊙O及CB的延長(zhǎng)線(xiàn)相交于點(diǎn)E、F、G、H.
(1)求證:AE=CK;
(2)如果AB=a,AD= (a為大于零的常數(shù)),求BK的長(zhǎng):
(3)若F是EG的中點(diǎn),且DE=6,求⊙O的半徑和GH的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC 中,已知,∠A:∠B:∠C = 123,ABC 的形狀是____________________

查看答案和解析>>

同步練習(xí)冊(cè)答案