已知∠AOB=45°,P是∠AOB內(nèi)一點(diǎn),且PO=4,M、N分別是OA、OB上的動點(diǎn),則△PMN周長的最小值是
4
2
4
2
分析:作P關(guān)于OA,OB的對稱點(diǎn)C,D.連接OC,OD.則當(dāng)M,N是CD與OA,OB的交點(diǎn)時(shí),△PMN的周長最短,最短的值是CD的長.根據(jù)對稱的性質(zhì)可以證得:△COD是等腰直角三角形,據(jù)此即可求解.
解答:解:作P關(guān)于OA,OB的對稱點(diǎn)C,D.連接OC,OD.則當(dāng)M,N是CD與OA,OB的交點(diǎn)時(shí),△PMN的周長最短,最短的值是CD的長.
連接CO、PO、DO,
∵PC關(guān)于OA對稱,
∴∠COP=2∠AOP,OC=OP
同理,∠DOP=2∠BOP,OP=OD,
∴∠COD=∠COP+∠DOP=2(∠AOP+∠BOP)=2∠AOB=90°,OC=OD=OP=4.
∴△COD是等腰直角三角形.
則CD=
2
OC=
2
×4=4
2

故答案為:4
2
點(diǎn)評:本題考查了對稱的性質(zhì),正確作出圖形,理解△PMN周長最小的條件是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知∠AOB=45°,A1是OA上的一點(diǎn),且OA1=1,過A1作OA的垂線交OB于點(diǎn)B1,過點(diǎn)B1作OB的垂線交OA于點(diǎn)A2,過點(diǎn)A2作OA的垂線交OB于點(diǎn)B2…,依次記△A1B1A2,△A2B2A3,△A3B3A4…的面積為S1,S2,S3…,則Sn=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知∠AOB=45°,P為∠AOB內(nèi)任一點(diǎn),且OP=5,請?jiān)趫D中分別畫出點(diǎn)P關(guān)于OA,OB的對稱點(diǎn)P1,P2,連P1O,P2O,P1P2,則△OP1P2的面積為
25
2
25
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知∠AOB=45°,A1是OA上的一點(diǎn),OA1=1,過A1作OA的垂線交OB于點(diǎn)B1,過點(diǎn)B1作OB的垂線交OA于點(diǎn)A2;過A2作OA的垂線交OB于點(diǎn)B2…如此繼續(xù),依次記△A1B1A2,△A2B2A3,△A3B3A4…的面積為S1,S2,S3…,則S2011=
24019
24019

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知∠AOB=45°,OC是∠AOB的一條三等分線,則∠AOC的度數(shù)是(  )

查看答案和解析>>

同步練習(xí)冊答案