【題目】函數(shù)y=x2+bx+c與y=x的圖象如圖所示,有以下結(jié)論: ①b2﹣4c>0;
②b+c+1=0;
③3b+c+6=0;
④當(dāng)1<x<3時(shí),x2+(b﹣1)x+c<0.
其中正確的個(gè)數(shù)為( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
【答案】B
【解析】解:∵函數(shù)y=x2+bx+c與x軸無(wú)交點(diǎn), ∴b2﹣4ac<0;
故①錯(cuò)誤;
當(dāng)x=1時(shí),y=1+b+c=1,
故②錯(cuò)誤;
∵當(dāng)x=3時(shí),y=9+3b+c=3,
∴3b+c+6=0;
③正確;
∵當(dāng)1<x<3時(shí),二次函數(shù)值小于一次函數(shù)值,
∴x2+bx+c<x,
∴x2+(b﹣1)x+c<0.
故④正確.
故選B
由函數(shù)y=x2+bx+c與x軸無(wú)交點(diǎn),可得b2﹣4c<0;當(dāng)x=1時(shí),y=1+b+c=1;當(dāng)x=3時(shí),y=9+3b+c=3;當(dāng)1<x<3時(shí),二次函數(shù)值小于一次函數(shù)值,可得x2+bx+c<x,繼而可求得答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,長(zhǎng)方形OABC的邊OA在數(shù)軸上,O為原點(diǎn),長(zhǎng)方形OABC的面積為12,OC邊長(zhǎng)為3.
(1)數(shù)軸上點(diǎn)A表示的數(shù)為________.
(2)將長(zhǎng)方形OABC沿?cái)?shù)軸水平移動(dòng),移動(dòng)后的長(zhǎng)方形記為O′A′B′C′,移動(dòng)后的長(zhǎng)方形O′A′B′C′與原長(zhǎng)方形OABC重疊部分(如圖2中陰影部分)的面積記為S.
①當(dāng)S恰好等于原長(zhǎng)方形OABC面積的一半時(shí),數(shù)軸上點(diǎn)A′表示的數(shù)是多少?
②設(shè)點(diǎn)A的移動(dòng)距離AA′=x.
(ⅰ)當(dāng)S=4時(shí),求x的值;
(ⅱ)D為線段AA′的中點(diǎn),點(diǎn)E在線段OO′上,且OE=OO′,當(dāng)點(diǎn)D,E所表示的數(shù)互為相反數(shù)時(shí),求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,(1)∠2與∠B是什么角?若∠1=∠B,則∠2與∠B有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.
(2)∠3與∠C是什么角?若∠4+∠C=180°,則∠3與∠C有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解學(xué)生對(duì)“A:古詩(shī)詞,B:國(guó)畫(huà),C:京劇,D:書(shū)法”等中國(guó)傳統(tǒng)文化項(xiàng)目的最喜愛(ài)情況,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問(wèn)卷調(diào)查(每人限選一項(xiàng)),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.
請(qǐng)結(jié)合統(tǒng)計(jì)圖回答下列問(wèn)題:
(1)在這次調(diào)查中,一共調(diào)查了名學(xué)生;在扇形統(tǒng)計(jì)圖中,項(xiàng)目B對(duì)應(yīng)扇形的圓心角是度;
(2)如果該校共有2000名學(xué)生,請(qǐng)估計(jì)該校最喜愛(ài)項(xiàng)目A的學(xué)生有多少人?
(3)若該校在A、B、C、D四項(xiàng)中任選兩項(xiàng)成立課外興趣小組,請(qǐng)用畫(huà)樹(shù)狀圖(或列表)計(jì)算恰好選中項(xiàng)目A和D的概率.
故答案為:200,72;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)|-2|÷(-)+(-5)×(-2); (2)(-+)×(-24);
(3)15÷(-+); (4)(-2)2-|-7|-3÷(-)+(-3)3×(-)2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)八年級(jí)班數(shù)學(xué)課外興趣小組在探究:“邊形共有多少條對(duì)角線”這一問(wèn)題時(shí),設(shè)計(jì)了如下表格:
多邊形的邊數(shù) | … | |||||
從多邊形一個(gè)頂點(diǎn)出發(fā)可引起的對(duì)角線條數(shù) | … | |||||
多邊形對(duì)角線的總條數(shù) | … |
探究:假若你是該小組的成員,請(qǐng)把你研究的結(jié)果填入上表;
猜想:隨著邊數(shù)的增加,多邊形對(duì)角線的條數(shù)會(huì)越來(lái)越多,從邊形的一個(gè)頂點(diǎn)出發(fā)可引的對(duì)角線條數(shù)為多少,邊形對(duì)角線的總條數(shù)為多少.
應(yīng)用:個(gè)人聚會(huì),每不相鄰的人都握一次手,共握多少次手?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD的對(duì)角線交于點(diǎn)E,有AE=EC,BE=ED,以AB為直徑的半圓過(guò)點(diǎn)E,圓心為O.
(1)利用圖1,求證:四邊形ABCD是菱形.
(2)如圖2,若CD的延長(zhǎng)線與半圓相切于點(diǎn)F,已知直徑AB=8. ①連結(jié)OE,求△OBE的面積.
②求弧AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A(0,6),B(8,0),AB=10,如圖作∠DBO=∠ABO,∠CAy=∠BAO,BD交y軸于點(diǎn)E,直線DO交AC于點(diǎn)C.
(1)①求證:△ACO≌△EDO;②求出線段AC、BD的位置關(guān)系和數(shù)量關(guān)系;
(2)動(dòng)點(diǎn)P從A出發(fā),沿A﹣O﹣B路線運(yùn)動(dòng),速度為1,到B點(diǎn)處停止運(yùn)動(dòng);動(dòng)點(diǎn)Q從B出發(fā),沿B﹣O﹣A運(yùn)動(dòng),速度為2,到A點(diǎn)處停止運(yùn)動(dòng).二者同時(shí)開(kāi)始運(yùn)動(dòng),都要到達(dá)相應(yīng)的終點(diǎn)才能停止.在某時(shí)刻,作PE⊥CD于點(diǎn)E,QF⊥CD于點(diǎn)F.問(wèn)兩動(dòng)點(diǎn)運(yùn)動(dòng)多長(zhǎng)時(shí)間時(shí)△OPE與△OQF全等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠BOC=2∠AOB,OD平分∠AOC,∠BOD=20°,則∠AOB等于( ).
A. 50° B. 40° C. 30° D. 20°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com