若直線分別交軸、軸于A、C兩點(diǎn),點(diǎn)P是該直線上在第一象限內(nèi)的一點(diǎn),PB⊥軸,B為垂足,且S⊿ABC= 6.
(1)求點(diǎn)B和P的坐標(biāo) .(2)過點(diǎn)B畫出直線BQ∥AP,交軸于點(diǎn)Q,并直接寫出點(diǎn)Q的坐標(biāo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,直線分別交軸、軸于兩點(diǎn).點(diǎn)、,以為一邊在軸上方作矩形,且.設(shè)矩形與重疊部分的面積為.
(1)求點(diǎn)、的坐標(biāo);
(2)當(dāng)值由小到大變化時(shí),求與的函數(shù)關(guān)系式;
(3)若在直線上存在點(diǎn),使等于,請(qǐng)直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,直線分別交軸、軸于B、A兩點(diǎn),拋物線L:的頂點(diǎn)G在軸上,且過(0,4)和(4,4)兩點(diǎn).
1.求拋物線L的解析式;
2.拋物線L上是否存在這樣的點(diǎn)C,使得四邊形ABGC是以BG為底邊的梯形,若存在,請(qǐng)求出C點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.
3.將拋物線L沿軸平行移動(dòng)得拋物線L,其頂點(diǎn)為P,同時(shí)將△PAB沿直線AB翻折得到△DAB,使點(diǎn)D落在拋物線L上. 試問這樣的拋物線L是否存在,若存在,求出L對(duì)應(yīng)的函數(shù)關(guān)系式,若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省鹽城市阜寧縣東溝中學(xué)八年級(jí)下學(xué)期期中考試數(shù)學(xué)試卷(帶解析) 題型:解答題
如圖,在平面直角坐標(biāo)系中,直線分別交軸、軸于兩點(diǎn).點(diǎn)、,以為一邊在軸上方作矩形,且.設(shè)矩形與重疊部分的面積為.
(1)求點(diǎn)、的坐標(biāo);
(2)當(dāng)值由小到大變化時(shí),求與的函數(shù)關(guān)系式;
(3)若在直線上存在點(diǎn),使等于,請(qǐng)直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2010年人教新課標(biāo)初三模擬沖刺預(yù)測理科數(shù)學(xué)卷 題型:解答題
如圖6,在平面直角坐標(biāo)系中,直線分別交軸、軸于點(diǎn)將繞點(diǎn)順時(shí)針旋轉(zhuǎn)90后得到.
(1)求直線的解析式;
(2)若直線與直線相交于點(diǎn),求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com