【題目】甲、乙兩人參加學(xué)校組織的理化實(shí)驗(yàn)操作測試,近期的5次測試成績?nèi)鐖D所示.

(1)請(qǐng)你根據(jù)圖中的數(shù)據(jù)填寫表格;

姓名

平均數(shù)

眾數(shù)

方差

8

8

2.8

(2)從平均數(shù)和方差相結(jié)合看,誰的成績好些?從發(fā)展趨勢(shì)來看,誰的成績好些?

【答案】(1)8 0.4 8;(2)從平均數(shù)和方差相結(jié)合看,甲的成績好些;從發(fā)展趨勢(shì)來看,乙的成績好些.

【解析】(1)直接結(jié)合圖中數(shù)據(jù)結(jié)合平均數(shù)以及方差求法分別得出答案;
(2)利用方差反映數(shù)據(jù)穩(wěn)定性平均數(shù)是反映整體的平均水平進(jìn)而分析得出答案.

(1)如圖所示:乙的平均數(shù)為:

S2=

=0.4;

由圖中數(shù)據(jù)可得:甲組數(shù)據(jù)的眾數(shù)為8,

姓名

平均數(shù)

眾數(shù)

方差

8

8

0.4

8

8

2.8

(2)從平均數(shù)和方差相結(jié)合看,甲的成績好些;

從發(fā)展趨勢(shì)來看,乙的成績好些.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖17張長為a,寬為bab)的小長方形紙片,按圖2的方式不重疊地放在矩形ABCD內(nèi),未被覆蓋的部分(兩個(gè)矩形)用陰影表示.設(shè)左上角與右下角的陰影部分的面積的差為S,當(dāng)BC的長度變化時(shí),按照同樣的放置方式,S始終保持不變,則a,b滿足( )

A. a=b B. a=2b

C. a=3b D. a=4b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從邊長為a的大正方形紙板中挖去一個(gè)邊長為b的小正方形后,將其裁成四個(gè)相同的等腰梯形(如圖1),然后拼成一個(gè)平行四邊形(如圖2)。那么通過計(jì)算兩個(gè)圖形的陰影部分的面積,可以驗(yàn)證成立的公式是( )

Aa2b2=(ab)2

B(a+b)2="a+2ab+b"

C(ab)2=a22ab+b2

Da2b2=(ab)(a+b)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,將一張正方形紙片剪成四個(gè)大小一樣的小正方形,然后將其中一個(gè)小正方形再按同樣的方法剪成四個(gè)小正方形,再將其中的一個(gè)小正方形剪成四個(gè)小正方形,如此循環(huán)進(jìn)行下去。

(1)完成下表:

剪的次數(shù)

1

2

3

4

5

...

n

小正方形的個(gè)數(shù)

4

7

10

...

(2) .(用含n的代數(shù)式表示)

(3)按上述方法,能否得到2018個(gè)小正方形?如果能,請(qǐng)求出n;如不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)題意解答

(1)如圖1,已知E是矩形ABCD的邊AB上一點(diǎn),EF⊥DE交BC于點(diǎn)F,證明:△ADE∽△BFE.
(2)這個(gè)相似的基本圖形像字母K,可以稱為“K”型相似,但更因?yàn)閳D形的結(jié)構(gòu)特征是一條線上有3個(gè)垂直關(guān)系,也常被稱為“一線三垂直”,那普通的3個(gè)等角又會(huì)怎樣呢?
變式一如圖2,已知等邊三角形ABC,點(diǎn)D、E分別為BC,AC上的點(diǎn),∠ADE=60°.
①圖中有相似三角形嗎?請(qǐng)說明理由.
②如圖3,若將∠ADE在△ABC的內(nèi)部(∠ADE兩邊不與BC重合),繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)一定的角度,還有相似三角形嗎?
(3)變式二如圖4,隱藏變式1圖形中的線段AE,在得到的新圖形中.
①如果∠B=∠C=∠ADE=50°,圖中有相似三角形嗎?請(qǐng)說明理由.
②如圖5,若∠B=∠C=∠ADE=∠a,∠a為任意角,還有相似三角形嗎?
(4)交式三已知,相鄰兩條平形直線間的距離相等,若等腰直角△ABC的三個(gè)頂點(diǎn)分別在這三條平行直線上,則cosa的值是(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)邊長為3的正方形的對(duì)角線長為a.下列關(guān)于a的四種說法: ①a是無理數(shù);
②a可以用數(shù)軸上的一個(gè)點(diǎn)來表示;
③3<a<4;
④a是18的算術(shù)平方根.
其中,所有正確說法的序號(hào)是(
A.①④
B.②③
C.①②④
D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是王老師在數(shù)學(xué)課堂上給同學(xué)們出的一道數(shù)學(xué)題,要求對(duì)以下實(shí)數(shù)進(jìn)行分類填空:

,0,,,18,,,-0.56,3.14159,,,,0.8080080008,-.

(1)有理數(shù)集合:________________________________________________________________________

(2)無理數(shù)集合:________________________________________________________________________;

(3)非負(fù)整數(shù)集合:________________________________________________________________________;

(4)分?jǐn)?shù)集合:________________________________________________________________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,點(diǎn)A為半圓O直徑MN所在直線上一點(diǎn),射線AB垂直于MN,垂足為A,半圓繞M點(diǎn)順時(shí)針轉(zhuǎn)動(dòng),轉(zhuǎn)過的角度記作a;設(shè)半圓O的半徑為R,AM的長度為m,回答下列問題:
(1)探究:若R=2,m=1,如圖1,當(dāng)旋轉(zhuǎn)30°時(shí),圓心O′到射線AB的距離是;如圖2,當(dāng)a=°時(shí),半圓O與射線AB相切;
(2)如圖3,在(1)的條件下,為了使得半圓O轉(zhuǎn)動(dòng)30°即能與射線AB相切,在保持線段AM長度不變的條件下,調(diào)整半徑R的大小,請(qǐng)你求出滿足要求的R,并說明理由.
(3)發(fā)現(xiàn):如圖4,在0°<α<90°時(shí),為了對(duì)任意旋轉(zhuǎn)角都保證半圓O與射線AB能夠相切,小明探究了cosα與R、m兩個(gè)量的關(guān)系,請(qǐng)你幫助他直接寫出這個(gè)關(guān)系;cosα=(用含有R、m的代數(shù)式表示)
(4)拓展:如圖5,若R=m,當(dāng)半圓弧線與射線AB有兩個(gè)交點(diǎn)時(shí),α的取值范圍是 , 并求出在這個(gè)變化過程中陰影部分(弓形)面積的最大值(用m表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,經(jīng)過點(diǎn)A作AE⊥OC,垂足為點(diǎn)D,AE與BC交于點(diǎn)F,與過點(diǎn)B的直線交于點(diǎn)E,且EB=EF.
(1)求證:BE是⊙O的切線;
(2)若CD=1,cos∠AEB= ,求BE的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案