【題目】如圖,小明有5張寫著不同數(shù)的卡片,請(qǐng)你按照題目要求抽出卡片,完成下列問(wèn)題:

(1)從中取出3張卡片,使這3張卡片上數(shù)字的乘積最大,如何抽?最大值是多少?

(2)從中取出2張卡片,使這2張卡片上數(shù)字相除的商最小,如何抽?最小值是多少?

【答案】(1)抽取的3張卡片是-7、-5、+4,乘積的最大值為140;(2)抽取的2張卡片是-7、1,商的最小值-7.

【解析】

(1)觀察這五個(gè)數(shù),要找乘積最大的就要找兩個(gè)負(fù)數(shù)一個(gè)正數(shù),數(shù)值較大的數(shù),所以選-7,-54;
(2)2張卡片上數(shù)字相除的商最小就要找符號(hào)不同,且分母越大越好,分子越小越好,所以就要選-71,且1為分母.

(1)抽取的3張卡片是-7、-5、+4,乘積的最大值為140.

(2)抽取的2張卡片是-7、1,商的最小值-7.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】同學(xué)們都知道:|5|在數(shù)軸上表示數(shù)5的點(diǎn)與原點(diǎn)的距離,而|5-(-2)|表示5-2之差的絕對(duì)值,實(shí)際上也可理解為5-2兩數(shù)在數(shù)軸上所對(duì)應(yīng)的兩點(diǎn)之間的距離.請(qǐng)你借助數(shù)軸進(jìn)行以下探索:

(1)表示 的距離.

(2)數(shù)軸上表示x 7的兩點(diǎn)之間的距離可以表示為 .

(3)如果|x-2|=5,則x= .

(4)同理|x+1|+|x-2|表示數(shù)軸上有理數(shù)x所對(duì)應(yīng)的點(diǎn)到-12所對(duì)應(yīng)的點(diǎn)的距離之和,請(qǐng)你找出所有符合條件的整數(shù)x,使得|x+1|+|x-2|=3,這樣的整數(shù)是 .

(5)由以上探索猜想對(duì)于任何有理數(shù)x,|x+3|+|x-6|的最小值是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB=AC,AD是△ABC的角平分線,點(diǎn)O為AB的中點(diǎn),連接DO并延長(zhǎng)到點(diǎn)E,使OE=OD,連接AE,BE.

(1)求證:四邊形AEBD是矩形;

(2)當(dāng)△ABC滿足什么條件時(shí),矩形AEBD是正方形?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的運(yùn)算程序中,若開始輸入的x值為48,我們發(fā)現(xiàn)第一次輸出的結(jié)果為24,第二次輸出的結(jié)果為12,…,則第2018次輸出的結(jié)果為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

(1)(+)×(-60) (2) (-)×(-3)÷(-1)÷3;

(3) (-5)×(-3)+(-7)×(-3)+12×(-3) (4) 19×(-8)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)G,點(diǎn)F是CD上一點(diǎn),且滿足 = ,連接AF并延長(zhǎng)交⊙O于點(diǎn)E,連接AD,DE,若CF=2,AF=3,給出下列結(jié)論:①△ADF∽△AED;②FG=2;③tanE= ;④SDEF=4 ,其中正確的是(
A.①②③
B.②③④
C.①②④
D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD中,E,F(xiàn)是對(duì)角線BD上的兩點(diǎn),如果添加一個(gè)條件,使△ABE≌△CDF,則添加的條件不能為(  )

A. BE=DF B. BF=DE C. AE=CF D. ∠1=∠2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形OABC的邊OA,OC在坐標(biāo)軸上,點(diǎn)B的坐標(biāo)為(﹣4,4).點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿x軸向點(diǎn)O運(yùn)動(dòng);點(diǎn)Q從點(diǎn)O同時(shí)出發(fā),以相同的速度沿x軸的正方向運(yùn)動(dòng),規(guī)定點(diǎn)P到達(dá)點(diǎn)O時(shí),點(diǎn)Q也停止運(yùn)動(dòng).連接BP,過(guò)P點(diǎn)作BP的垂線,與過(guò)點(diǎn)Q平行于y軸的直線l相交于點(diǎn)D.BD與y軸交于點(diǎn)E,連接PE.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s).

(1)∠PBD的度數(shù)為 ,點(diǎn)D的坐標(biāo)為 (用t表示);

(2)當(dāng)t為何值時(shí),△PBE為等腰三角形?

(3)探索△POE周長(zhǎng)是否隨時(shí)間t的變化而變化?若變化,說(shuō)明理由;若不變,試求這個(gè)定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次函數(shù)ykx-6中,已知yx的增大而減。铝嘘P(guān)于反比例函數(shù)y

的描述,其中正確的是( )

A. 當(dāng)x>0時(shí),y>0 B. yx的增大而增大

C. yx的增大而減小 D. 圖像在第二、四象限

查看答案和解析>>

同步練習(xí)冊(cè)答案