【題目】如圖,正方形OABC的邊OA,OC在坐標(biāo)軸上,點B的坐標(biāo)為(﹣4,4).點P從點A出發(fā),以每秒1個單位長度的速度沿x軸向點O運動;點Q從點O同時出發(fā),以相同的速度沿x軸的正方向運動,規(guī)定點P到達點O時,點Q也停止運動.連接BP,過P點作BP的垂線,與過點Q平行于y軸的直線l相交于點D.BD與y軸交于點E,連接PE.設(shè)點P運動的時間為t(s).

(1)∠PBD的度數(shù)為 ,點D的坐標(biāo)為 (用t表示);

(2)當(dāng)t為何值時,△PBE為等腰三角形?

(3)探索△POE周長是否隨時間t的變化而變化?若變化,說明理由;若不變,試求這個定值.

【答案】145°,(tt);(2t4秒或()秒;(3POE周長是定值,該定值為8

【解析】試題分析:(1)易證△BAP≌△PQD,從而得到DQ=AP=t,從而可以求出∠PBD的度數(shù)和點D的坐標(biāo).

2)由于∠EBP=45°,故圖1是以正方形為背景的一個基本圖形,容易得到EP=AP+CE.由于△PBE底邊不定,故分三種情況討論,借助于三角形全等及勾股定理進行求解,然后結(jié)合條件進行取舍,最終確定符合要求的t值.

3)由(2)已證的結(jié)論EP=AP+CE很容易得到△POE周長等于AO+CO=8,從而解決問題.

試題解析:(1)如圖1,由題可得:AP=OQ=1×t=t(秒)

∴AO=PQ

四邊形OABC是正方形,∴AO=AB=BC=OC,∠BAO=∠AOC=∠OCB=∠ABC=90°

∵DP⊥BP,∴∠BPD=90°,∴∠BPA=90°﹣∠DPQ=∠PDQ

∵AO=PQ,AO=AB,∴AB=PQ

△BAP△PQD中,∵∠BAP=∠PQD∠BPA=∠PDQ,AB=PQ∴△BAP≌△PQDAAS),∴AP=QD,BP=PD∵∠BPD=90°,BP=PD,∴∠PBD=∠PDB=45°∵AP=t,∴DQ=tD坐標(biāo)為(t,t).

故答案為:45°,(tt).

2PB=PE,由△PAB≌△DQPPB=PD,顯然PB≠PE,這種情況應(yīng)舍去.

EB=EP,則∠PBE=∠BPE=45°∴∠BEP=90°,∴∠PEO=90°﹣∠BEC=∠EBC

△POE△ECB中,∵∠PEO=∠EBC,∠POE=∠ECB,EP=BE∴△POE≌△ECBAAS),∴OE=CB=OCE與點C重合(EC=0),P與點O重合(PO=0).

B﹣4,4),∴AO=CO=4.此時t=AP=AO=4

BP=BE,在Rt△BAPRt△BCE中,∵BA=BCBP=BE,∴Rt△BAP≌Rt△BCEHL),∴AP=CE

∵AP=t,∴CE=t,∴PO=EO=4﹣t

∵∠POE=90°PE==

延長OA到點F,使得AF=CE,連接BF,如圖2所示.在△FAB△ECB中,∵AB=CB,∠BAF=∠BCE=90°,AF=CE∴△FAB≌△ECB,∴FB=EB∠FBA=∠EBC

∵∠EBP=45°,∠ABC=90°∴∠ABP+∠EBC=45°,∴∠FBP=∠FBA+∠ABP

=∠EBC+∠ABP=45°,∴∠FBP=∠EBP

△FBP△EBP中,

∴△FBP≌△EBPSAS),FP=EP,EP=FP=FA+AP=CE+AP,EP=t+t=2t,=2t.解得:t=當(dāng)t4秒或()秒時,PBE為等腰三角形.

3∵EP=CE+AP,∴OP+PE+OE=OP+AP+CE+OE=AO+CO=4+4=8∴△POE周長是定值,該定值為8

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC的頂點A,C分別在x軸和y軸上,點B的坐標(biāo)為(4,6).雙曲線y= (x>0)的圖象經(jīng)過BC的中點D,且與AB交于點E,連接DE.

(1)求k的值及點E的坐標(biāo);
(2)若點F是邊上一點,且△BCF∽△EBD,求直線FB的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明有5張寫著不同數(shù)的卡片,請你按照題目要求抽出卡片,完成下列問題:

(1)從中取出3張卡片,使這3張卡片上數(shù)字的乘積最大,如何抽?最大值是多少?

(2)從中取出2張卡片,使這2張卡片上數(shù)字相除的商最小,如何抽?最小值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖把長方形沿對角線折疊,重合部分為△EBD。

(1) △EBD是等腰三角形嗎?為什么?

(2) 若AB=12cm,BC=18cm,求AE的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是將菱形ABCD以點O為中心按順時針方向分別旋轉(zhuǎn)90°180°,270°后形成的圖形。若,AB=2,則圖中陰影部分的面積為

A. 124 B. 5 C. 12-4 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是一塊銳角三角形余料,邊BC=120mm,高AD=80mm,要把它加工成長方形零件PQMN,使長方形PQMN的邊QM在BC上,其余兩個頂點P,N分別在AB,AC上,求這個長方形零件PQMN面積S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角三角形中,
(1)猜想 , 之間的關(guān)系,并證明.
(2)猜想cosC與a,b,c之間的關(guān)系?并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠C = 90,以斜邊AB為邊向外作正方形ABDE,且正方形對角線交于點O,連接OC,已知AC=6,OC=,則直角邊BC的長為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示∠AOB的紙片,OC平分∠AOB,如圖2把∠AOB沿OC對折成∠COBOAOB重合),從O點引一條射線OE,使∠BOE=EOC,再沿OE把角剪開,若剪開后得到的3個角中最大的一個角為76°,則∠AOB=_____________°.

查看答案和解析>>

同步練習(xí)冊答案