【題目】對于任意一個自然數(shù)N,將其各個數(shù)位上的數(shù)字相加得到一個數(shù),我們把這一過程稱為一次操作,把這個得到的數(shù)進行同樣的操作,不斷進行下去,最終會得到一個一位數(shù)K,我們把K稱為N的“終極數(shù)”,并記f(N)=K.例如,456→4+5+6=15→1+5=6,∴f(456)=6.
(1)計算:f(2019)= .f(20192020)= .
(2)有一個三位自然數(shù)M=,已知f(M)=4,且x<y<z,請求出所有滿足條件的自然數(shù)M.
【答案】(1)3,7;(2)有滿足條件的M為139,148,157,238,247,256,346,589,678.
【解析】
(1)由題意直接可求;
(2)由已知條件得到4=0+4=1+3=2+2,即z+y+z的值為4或13或22,再結(jié)合x<y<z,即可求解.
解:(1)由題意可知,2019→2+0+1+9=12→1+2=3,
∴f(2019)=3;
20192020→2+0+1+9+2+0+2+0=16→1+6=7,
∴f(20192020)=7;
故答案為3,7;
(2)∵三位自然數(shù)M=,f(M)=4,
∵4=0+4=1+3=2+2,
當4=0+4時,x+y+z=4,或x+y+z=40(舍),
∵x<y<z,
∴x=0,y=1,z=3,此時不符題意;
當4=1+3時,x+y+z=13或x+y+z=31(舍),
∵x<y<z,
∴滿足條件的M為139,148,157,238,247,256,346,
當4=2+2時,x+y+z=22,
∵x<y<z,
∴滿足條件的M為589,678,
綜上所述,所有滿足條件的M為139,148,157,238,247,256,346,589,678.
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,點P在AD上,AB=2,AP=1.直角尺的直角頂點放在點P處,直角尺的兩邊分別交AB、BC于點E、F,連接EF(如圖1).
(1)當點E與點B重合時,點F恰好與點C重合(如圖2).
①求證:△APB∽△DCP;
②求PC、BC的長.
(2)探究:將直角尺從圖2中的位置開始,繞點P順時針旋轉(zhuǎn),當點E和點A重合時停止.在這個過程中(圖1是該過程的某個時刻),觀察、猜想并解答:
① tan∠PEF的值是否發(fā)生變化?請說明理由.
② 設AE=x,當△PBF是等腰三角形時,請直接寫出x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC的頂點A、B、C的坐標分別是A(-1,-1)、B(-4,-3)、C(-4,-1).
(1)將△ABC向右平移三個單位后得到則_________;
(2)畫出△ABC關于原點O中心對稱的圖形.
(3)將△ABC繞原點A按順時針方向旋轉(zhuǎn)90°后得到畫出則的坐標為_________,的坐標為_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,在內(nèi)有三個正方形,且這三個正方形都有一邊在上,都有一個頂點在上,點在上,第一個正方形邊長,第二個正方形邊長,那么第三個正方形的邊長為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示為某種型號的臺燈的橫截面圖,已知臺燈燈柱AB長30cm,且與水平桌面垂直,燈臂AC長為10cm,燈頭的橫截面△CEF為直角三角形,當燈臂AC與燈柱AB垂直時,沿CE邊射出的光線剛好射到底座B點.若不考慮其它因素,則該臺燈在桌面可照亮的寬度BD的長為_____cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,點F在AD上,點E在BC上,把這個矩形沿EF折疊后,使點D恰好落在BC邊上的G點處,若矩形面積為且∠AFG=60°,GE=2BG,則折痕EF的長為( )
A. 1 B. C. 2 D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=ax+1與x軸、y軸分別相交于A、B兩點,與雙曲線y=(x>0)相交于點P,PC⊥x軸于點C,且PC=2,點A的坐標為(﹣2,0).
(1)求雙曲線的解析式;
(2)若點Q為雙曲線上點P右側(cè)的一點,且QH⊥x軸于H,當以點Q、C、H為頂點的三角形與△AOB相似時,求點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某種商品每天的銷售利潤(元)與銷售單價(元)之間滿足關系:,其圖像如圖所示.
(1)銷售單價為多少元時,這種商品每天的銷售利潤最大?最大利潤為多少元?
(2)若該商品每天的銷售利潤不低于12元,則銷售單價的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)有一塊直角三角形的鐵皮,,,.要在其中剪出一個面積盡可能大的正方形,小紅和小亮各想出了甲、乙兩種方案,請你幫忙算一算哪一種方案剪出的正方形面積較大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com