【題目】如圖,分別過點(diǎn)C、B作△ABC的BC邊上的中線AD及其延長線的垂線, 垂足分別為E、F.求證:BF=CE.
【答案】見解析
【解析】試題分析:由已知條件“過點(diǎn)C、B作AD及其延長線的垂線”易證兩個(gè)直角相等;再由AD是中線知BD=CD,對頂角∠BDF與∠CDE相等,利用“AAS”來證明△BDF≌△CDE;最后根據(jù)全等三角形的對應(yīng)邊相等來證明BF=CE.
證明:根據(jù)題意,知CE⊥AF,BF⊥AF,
∴∠CED=∠BFD=90°,
又∵AD是邊BC上的中線,
∴BD=DC;
在Rt△BDF和Rt△CDE中,
∠BDF=∠CDE(對頂角相等),BD=CD,∠CED=∠BFD,
∴△BDF≌△CDE(AAS),
∴BF=CE(全等三角形的對應(yīng)邊相等).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實(shí)踐探究,解決問題
如圖1,△ABC中,AD為BC邊上的中線,則S△ABD=S△ACD .
(1)在圖2中,E、F分別為矩形ABCD的邊AD、BC的中點(diǎn),且AB=4,AD=8,則S陰影=;
(2)在圖3中,E、F分別為平行四邊形ABCD的邊AD、BC的中點(diǎn),則S陰影和S平行四邊形ABCD之間滿足的關(guān)系式為;
(3)在圖4中,E、F分別為任意四邊形ABCD的邊AD、BC的中點(diǎn),則S陰影和S四邊形ABCD之間還滿足(2)中的關(guān)系式嗎?若滿足,請予以證明,若不滿足,說明理由.
解決問題:
(4)在圖5中,E、G、F、H分別為任意四邊形ABCD的邊AD、AB、BC、CD的中點(diǎn),并且圖中陰影部分的面積為20平方米,求圖中四個(gè)小三角形的面積和(即S1+S2+S3+S4的值).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知M,N表示單項(xiàng)式,且3x(M-5x)=6x2y3+N,則( )
A. M=2xy3,N=-15x B. M=3xy3,N=-15x2
C. M=2xy3,N=-15x2 D. M=2xy3,N=15x2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】骰子是一種特別的數(shù)字立方體(見右圖),它符合規(guī)則:相對兩面的點(diǎn)數(shù)之和總是7,下面四幅圖中可以折成符合規(guī)則的骰子的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)
(2)6.25×(﹣3.4)+6.25×4.4
(3)
(4)
(5)(﹣1)2015﹣(1﹣0.5)2×|2﹣22|
(6)﹣1+2﹣3+4﹣…﹣2015+2016.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,OA=8,OC=4,沿對角線OB折疊后,點(diǎn)A與點(diǎn)D重合, OD與BC交于點(diǎn)E,設(shè)點(diǎn)D的坐標(biāo)是,則的值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列幾種運(yùn)動(dòng)屬于平移的是( )
①水平運(yùn)輸帶上的磚的運(yùn)動(dòng);②啤酒生產(chǎn)線上的啤酒通過壓蓋機(jī)前后的運(yùn)動(dòng);③升降機(jī)上下做機(jī)械運(yùn)動(dòng);④足球場上足球的運(yùn)動(dòng)
A. 一種 B. 兩種 C. 三種 D. 四種
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平移前后的兩個(gè)圖形相互比較而言,下列說法正確的是( )
A. 兩個(gè)圖形大小不一樣
B. 兩個(gè)圖形的形狀不一樣
C. 平移前比平移后小
D. 兩個(gè)圖形全等
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com